Flexible Binding for
Reusable Composition of Web Services

Cesare Pautasso, Gustavo Alonso

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)
ETH Zentrum, 8092 Ziirich, Switzerland

{pautasso,alonso}@inf.ethz.ch

Abstract. In addition to publishing composite services as reusable ser-
vices, compositions can also be reused by applying them to orchestrate
different component services. To do so, it is important to describe compo-
sitions using flexible bindings, which define only the minimal constraints
on the syntax and semantics of the services to be composed. This way,
the choice of which service to invoke can be delayed to later stages in
the life cycle of the composition. In the context of Web service compo-
sition, we refine the concept of binding beyond the basic distinction of
static and dynamic binding. Bindings can be evaluated during the de-
sign, the compilation, the deployment, the beginning of the execution of
a composition, or just before the actual service invocation takes place.
Considering the current limited support of dynamic binding in the BPEL
service composition language, we show how we addressed the problem
in JOpera, where modeling bindings does not require a specific language
construct as it can be considered a special application of reflection.

1 Introduction

Software components are — by definition — reusable [28]. In this paper we look
at reusability from the opposite perspective and ask the following question: are
compositions also reusable? Clearly, thanks to the recursive nature of most com-
position languages, compositions as a whole can be immediately reused as com-
ponents. Web services, a particular kind of component used to build service
oriented architectures [26], are also intended to be reused in many different
combinations (e.g., [34]). Likewise, composite services are typically published
themselves as Web services [24].

In addition to reuse based on packaging entire compositions as components,
compositions — as opposed to basic components — can also be reused along a
qualitatively different dimension. As it was informally exemplified by W. Tracz
in [28]:

Part of this work is supported by grants from the Hasler Foundation (DISC Project
No. 1820) and the Swiss Federal Office for Education and Science (ADAPT, BBW
Project No. 02.0254 / EU IST-2001-37126).

If you have components to reuse then you need to glue them together.
If you have patterns to reuse, then you have the glue into which you have
to stick pieces. After you glue pieces together long enough and you start
seeing a pattern, then you can reuse the glue too.

Along these lines, the main contribution of this paper consists of applying
such idea to Web service composition. In particular, we discuss what are the
requirements for service composition languages, techniques and tools to support
reusable composition. To this end, the notion of binding is very important, as it
captures the relationship between the composition and its component services
and defines what are the corresponding reusability constraints.

In practice, reusability is not the only issue related to the flexible binding of
services into compositions. Other interesting ones concern the testability and the
reliability of the compositions. These are also two very important aspects to be
taken into account when building distributed applications out of the composition
of Web services.

From a different perspective, current Web service technologies can be seen as
an evolutionary step of existing RPC [4] based middleware to cover distribution
at a World-wide-web scale [1]. In this sense, SOAP [29] is used as a wire-protocol,
WSDL [30] as the interface description language (IDL), while UDDI [19] was
meant to provide the foundation for a global registry infrastructure. Based on
this, the focus of this paper is to discuss how to apply the notion of binding
to address the Web service composition problem and to determine how well the
existing Web services composition languages and tools support it.

Given the current limited level of support for static and dynamic binding
in BPEL4WS [16], in this paper we present how reusable service compositions
can be built using JOpera. JOpera is an open research platform for service
composition developed at the Swiss Federal Institute of Technology. It features
a visual composition language [22], a set of rapid composition tools based on
Eclipse [20] and supports an extensible set of composition techniques [23].

This paper is organized as follows. We introduce the problem of binding in
service oriented architectures by showing some of the limitations of BPEL in
Section 2. Then, we refine the notion of flexible binding according to different
orthogonal aspects: its scope and its evaluation time. In Section 4 we present
how the JOpera system uses reflection to support flexible binding. In Section 5
we discuss related work in the context of Web service composition. In Section 6
we draw some conclusions.

2 Motivation

In service oriented architectures, binding is an abstraction mechanism to separate
implementation specific details from a high-level description of the functionality
of the services to be accessed. As an example, consider the approach followed by
WSDL, which separates the abstract description of a service interface (the port
type) from the transport protocols and the addressing information used to access

set of services
(BPEL partner link type)

o Omposmon time

one service
(WSDL port type)

deployment time

Binding
invocation time

Fig. 1. Progressive refinement of a binding using BPEL

the corresponding service provider (the port). This separation of interface from
implementation fulfills the important requirement of adaptability that make a
composition reusable in an ever-changing distributed environment.

Building on this, BPEL'! uses the notion of abstract process and partner to
reflect the idea that the business processes modeling how different Web services
should be composed can be applied to different service providers. By extending
the WSDL standard service interface description with the declaration of a part-
ner link type, the process which defines how to compose different services does
not depend on specific services but can be customized to use different ones as
long as they fit with the expected link type.

As represented in Figure 1, during the life time of a process, a binding is
progressively refined going from a set of services to one specific service end
point. When a process is designed, it does not contain any reference to a specific
service, but it only lists partner port types. An abstract process is reused by
constructing a mapping between concrete service port type definitions and the
roles played by the various partners in the process. This mapping between WSDL
definitions and partners is set once the composition is deployed and it is fixed
for all executions of the composition.

As shown in the example (Figure 2), the only form of dynamic binding sup-
ported by BPEL consists of re-assigning end points which identify specific ports
within a service interface at runtime. End points are identified with the WS-
Addressing proposed standard [32]. Although this feature can be used to estab-
lish call-back relationships and allows to tap the flexibility offered by the separa-
tion between port types (interfaces) and ports (communication end-points), the
values for the port type and the operation themselves are fixed for each invoke
activity and cannot be changed as the process runs.

! The Business Process Execution Language for Web Services (BPEL4WS or BPEL)
language specification represents the current state of the art in process-oriented Web
service composition languages. It is currently undergoing a standardization process
at OASIS, which may change some of its capabilities. In this example we refer to
version 1.1 [14].

<process
xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
name="AsyncEchoService" targetNamespace="urn:asyncEcho:Service"
xmlns:this="urn:asyncEcho:Service" suppressJoinFailure="no"
enableInstanceCompensation="no" abstractProcess="no">

<partnerLinks>
<partnerLink name="caller" partnerLinkType="this:EchoPLT"
myRole="service" partnerRole="client"/>

</partnerLinks>

<variables>
<variable name="echoMessage" messageType="this:EchoMessage" />
</variables>

<sequence>
<receive name="echoReceive" partnerLink="caller"
portType="this:EchoService" operation="echo"
variable="echoMessage" createlnstance="yes"/>

<assign>
<copy>
<from variable="echoMessage" part="replyTo"/>
<to partnerLink="caller"/>
</copy>
</assign>

<invoke name="echoReply" partnerLink="caller"
portType="this:EchoClient" operation="echoCallback"
inputVariable="echoMessage" />
</sequence>

Fig. 2. Example of dynamic redirection of service end points with BPEL. The
assign activity copies a service end point reference from the incoming message
to the partner link which is going to be invoked afterwards.

Thus, BPEL limits the scope of a binding depending on the time it is evalu-
ated. Although a static binding can refer to different services identified by their
port types, a dynamic binding is restricted to switch between the various ports
of the service. This limits the reusability of composite services modeled with
BPEL. Furthermore, by using WSDL port types to define constraints in the
roles that can be assumed by each partner, such constraints are expressed only
at the level of the syntactical description of the service interface and no explicit
provision for semantics is made [16]. Thus, services which do not match the in-
terface description contained in the binding will not be considered as potential
replacements. Conversely, it is not possible to discard services that use the same
syntactical signature, but provide incompatible functionality.

Before we present in detail how we address these limitations with JOpera, we
introduce the notion of flexible binding abstracting from the details of a specific
service composition language.

3 Flexible Binding

In general, a binding of a service into a composition can be defined as the refer-
ence used to choose the service to be invoked as part of the compostion. As we
will discuss in the rest of this section, there are different ways of identifying the
services to invoke. Furthermore, a binding can be evaluated at different times
during the life cycle of a composition.

3.1 Modeling bindings

Different composition languages may take different approaches to describing how
components are bound into the composition. In this paper we make very little
assumptions about how a composition language is used to model a composition.
In particular, we assume that a composition contains two different kinds of in-
formation. 1) A set of bindings {b}, used to identify which services should be
composed. 2) A model of the structural relationship between the bindings.
Although it is outside the scope of this paper to detail such model, it is
worth noting that based on the structure of the composition it is possible to
define constraints on the services that can be bound into it. For example, if the
composition includes information about the data flow dependencies between the
services, this information can be used to constrain the services that can be used.
On the one hand, the data flow of the composition defines what data each service
should be able to produce and consume. On the other hand, if two services are
connected, they must fit with one another, i.e., be able to exchange messages with
compatible content. As another example, if the composition includes control flow
dependencies between the operations to be invoked, only services which support
compatible interaction protocols can be used within such composition.

Binding by inclusion In the simplest case, services are statically bound into a
composition by inclusion (b = s). Thus, the description of a service s is mixed
with the description of the structure of the composition. Although this solution
already captures the relationship between the composition and its component
services, it is too simple in order to effectively model the reuse of either. With
it, services can only be reused by duplicating their description in different parts
of the compositions. Likewise, it is not straightforward to apply the same com-
position to invoke different services.

Binding by reference involves using references linking the composition to external
descriptions of the services to be invoked. Thus, a binding becomes b = t — s,
where ¢ represents the name referencing a service and s describes the service to
be invoked. By using a reference, the service description can be stored separately
from the composition. This is an important step which enables to model reuse at
the level of the services, as it is now possible to have the same service referenced
by more than one binding within more than one composition. However, since
each binding uniquely identifies the service to be invoked, the model is not yet
powerful enough to reuse compositions, where a composition can be applied to
different services without modifying it.

Binding by constraint To support reusable compositions, we extend the previous
definition of binding to: b =t — S = {s : C(s)}, where now ¢ represents the
reference to a set of services S. Thanks to this approach, a composition may be
reused since its bindings only contain the constraint C modeling the requirements
that a service should satisfy in order to be included in the composition.

Although this enables to reuse a composition, it remains to be defined how
to model such constraints as part of each binding and when to evaluate the
binding so that the actual service to be invoked can be determined based on
the available known services. Depending on the available services and the actual
set of constraints, it may occur that no service can be found as a result of the
binding’s evaluation. This condition will result in a failure of the execution of the
composition. More precisely, issues such as service substitutability [7] and what
is the information that should be provided to identify a service and to determine
its equivalence with others remain open [11]. This is an important problem, as
the services to be bound into a composition must fit within its structure. In
other words, not all possible services may comply with the syntax and semantics
assumed by the composition as well as by the other services which are part of
it.

The problem of modeling these constraints can be addressed at different lev-
els of abstraction. As we have shown in the example of the previous section,
depending on the compostion language, it may be possible to define alternative
communication end points associated with a given service interface. This way
the composition does not contain hard-coded information about specific access
paths to the service’s functionality, but only defines how one should be cho-
sen. Abstracting from the communication details, a larger number of services
could be bound into a reusable composition as long as they have a compatible
semantics [6]. Thus, as part of the binding, it should be possible to constrain
the interface of the referenced service accordingly (e.g., by using ontologies [2],
interface templates [8], service offerings and constraint groups [27], abstract func-
tionalities [17], or formal functional specifications [33]).

3.2 Evaluating bindings

Once a composition includes flexible bindings that do not uniquely identify the
services to be composed, the composition system must evaluate such binding
(e(b) : b — s € S) so that the evaluation e selects the service s to be in-
voked among all possible ones (S) that satisfy the binding’s constraints. For a
composition, the result of the evaluation of all of its bindings forms a binding
configuration, which describes which services are going to be used for each of its
bindings. This evaluation can be influenced by different factors (Figure 3).

First of all, it may be useful to restrict the set of the services targeted by a
binding. For example, blacklisting is used to guarantee that a set of services will
not be used when dereferencing the binding. This mechanism allows to ensure
that when an existing composition is reused, for example, untrusted providers,
whose services have been added to the blacklist, are excluded from the set of
services that can be bound into it.

Services

Services to be invoked

in the Whitelist

Blacklisted
services

Services satisfying
the binding’s constraint

Fig. 3. Evaluating a binding using additional constraints

Conversely, whitelisting is used in a complementary way. Whereas a black-
listed service will not be considered, a binding constrained by a whitelist will
reference only services that are explicitly enumerated in such list. This way,
during the evaluation of the binding it is possible to control that the services
invoked by the composition, e.g., belong to a set of services that should be used
only for testing purposes.

Formally, the set of services that can be invoked [is related to the original
set S defined by the composition’s binding as follows:

[=(SNW)\B

where W represents the set of whitelisted services and B the blacklist. Although
it is unlikely that a service belongs to both lists at the same time, with this
definition the blacklist has the higher priority.

In addition to these two policies that control by exclusion or inclusion what
are the services that can be chosen, the choice of the service resulting from the
binding’s evaluation can also be driven by Quality of Service considerations [18].
In this case a trade off is involved, e.g., each service is selected by minimizing
the price (or invocation cost) associated with it, while maximizing the expected
performance (e.g., in terms of the guaranteed response time of the service). This
kind of metadata is typically maintained by service registries (e.g., UDDI [19])
which use a combination of automatic tools and manual validation to ensure its
correctness. However, there is still a lot of work that remains to be done before
issues such as trust establishment can be dealt with in a fully automatic manner.

3.3 Beyond static and dynamic binding

In the previous section we have presented what are some of the options that can
affect the evaluation of a binding, influencing the way a service is chosen to be
included in a composition. However, we have not discussed when this evaluation
may occur. During the life cycle of a composition, there are many opportunities

for taking such decision. Thus, the traditional distinction between static vs.
dynamic (or early vs. late [10]) binding can be refined by differentiating between
the following evaluation times.

Registration time First of all, even before a composition is defined, pre-existing
services are classified using a registry. The way individual services are catalogued
affects how they can be discovered and referenced from a composition [9].

Composition time During the definition of a composition, the developer makes
a selection of the services to be invoked. At this stage, it is possible to establish
a fixed binding to the exact service which should be invoked (a form of early
binding). However, this limits the reusability of the composition, which would
have to be modified in order to be used with different services. As an alternative
it is also possible to associate some more limited constraints with each binding.
These constraints will influence the choice of the service, which is delayed to a
later stage.

Compilation time Before a composition can be executed, it is usually compiled
from the representation used to model it to a representation optimized for execu-
tion. Assuming that the compiler has access to quality of service metadata about
services, it can use this information to select which services should be bound into
the composition based on different policies [25]. Existing approaching advocating
the automatic selection of services based on whether they fit with the compo-
sition’s structural constraints can also be considered as a form of compile-time
binding [3]. Compilation time is also a good opportunity for checking the consis-
tency of the binding’s constraints with respect to the available services. Although
it is possible that services which satisfy a binding will become available after a
composition has been compiled, it may be useful to warn the developer about
potential problems due to missing services and unsatisfied bindings.

Deployment time At this point, the compiled service composition is deployed
in the execution environment. During deployment the the composition changes
of hands, going from the control of the developer to the end user which will
manage its execution. In fact, it is the latest opportunity for the developer of
the composition to customize it by selecting the specific services that should be
bound into it. Thus, as part of the deployment, a developer playing the role of
system integrator may select what are the actual service providers to use for the
particular installation. This way, a reusable composition can be tailored to use
different services each time it is deployed to be executed at a different site taking
into account the characteristics of the local environment.

Startup time After deployment, a composition is ready to be executed. Bindings
can also be evaluated at the very beginning of its execution. This way, as part
of the initialization phase of a specific execution it can be decided what are the
services that should be used. More precisely, binding on startup refers to the
possibility of further constraining the services to be invoked in a different way
each time the composition is run.

One interesting application example of this case concerns the testing of the
composition. In this scenario, while a composition is developed, it may not be

possible to invoke production quality services. The services to be composed may
not yet be available or it may not be possible to use them for testing the com-
position, as they belong to a pre-existing system which is already in production.
Thus, developers may find it useful to start a testing run of their composition by
binding some of its services to stubs which will be invoked for testing purposes
only.

Invocation time This case is what is mostly referred to as dynamic binding
whereby the decision about which services should be used is delayed until the
latest possible time, i.e., when the service is about to be invoked.

Although all of the previously described evaluation times involved a certain
degree of manual intervention, in this case, we argue that is too late to do so. In
practice, the choice of the service during the binding’s evaluation should be fully
automated for two reasons. Asking a user operator to manually bind a service
invocation to a provider each time a service should be invoked would dramatically
affect the execution’s performance. Furthermore, it should not be assumed that
users monitoring the execution of the composition have complete knowledge
about details concerning bindings, which are typically under the purview of the
original developers of the composition.

Failed Invocation time A special case of dynamic binding, which we would like
to distinguish, concerns the re-evaluation of a binding in case of a failed service
invocation. The main purpose of this binding on retry mechanism is to enhance
the reliability of the composition by offering the capability of selecting a different
service if the one resulting from the first evaluation of the binding turns out — at
run-time — to be unavailable. More precisely, the default service referenced by the
binding is called as if the binding would have been a static one. If the invocation
succeeds, the execution of the composition continues normally. In case of failures
due, for example, to the temporary unavailability of the default remote service
provider, this mechanism allows to invoke a backup service which — in general —
is selected by re-evaluating the binding like in the case described previously.

4 Flexible Binding with JOpera

After giving a general description about flexible binding and how it can be used,
we proceed to show how these ideas have influenced the design of JOpera’s visual
composition language and the corresponding run-time infrastructure. In this
section we are argue that a composition language may support flexible bindings
without necessarily embodying this notion into a specific language construct.
Instead, we will show that different kinds of bindings can be all specified by
using reflection.

4.1 Modeling bindings with reflection

As opposed to introducing a specific language feature to support flexible bind-
ings, in JOpera we have taken a more general approach based on refiection.

Reflection is the ability of a computational system to represent and modify in-
formation about itself [15]. In JOpera, reflection is used to access and modify
metadata about the static structure of a composition, its current state of execu-
tion, as well as to interact with the services provided by the runtime system [21].
In the first case, the composition language extends the basic service invocation
construct with system parameters (In the visual syntax, they are shaded in gray
and their name is prefixed with sYS). Thus, in addition to input and output
parameters describing the data which is sent and received from a service, the
system parameters allow to control the invocation mechanism and access re-
lated metadata. Furthermore, system services model the interaction between a
composition and the underlying runtime infrastructure.

In the context of this paper, reflection is a mechanism used to expose in the
composition language the binding and registry services provided by the runtime
environment so that they can be controlled from within a composition. More
precisely, we are interested in accessing a registry listing available services and
in controlling the way a binding is evaluated.

One of the advantages of reflection is that it leaves ample freedom to model
the constraints associated with a binding in many different ways. As we are
going to show, with reflection it is possible to distinguish which part of the
composition should be dynamically bound from the policy controlling how such
binding should be evaluated. In the most advanced case, through reflection, a
composition may — for instance — dynamically modify itself to bind to a service
whose interface requires some form of adaptation to fit with the rest of the
composition.

4.2 Bindings in the JOpera Visual Composition Language

In the rest of this section we illustrate with an example how to use reflection
to model different kinds of bindings constraints: fixed bindings, where the con-
straint determines exactly which service should be invoked; communication level
constraints, applied to the communication end points to be used by the services;
structural constraints, defining minimal requirements on the syntax of a service
interface; but also even how to remove all constraints, where a binding is left
completely free so that a composition may call any Web service.

The examples shown in Figures 4 and 5 involves a typical (and reusable)
interaction pattern between a client and a service playing the role of broker. More
precisely, depending on the client’s request, the broker will lookup what are the
available supplier services, forward them the original client request and gather
their corresponding bids, which are finally sent back to the client. Although this
is a simple example, it can be implemented in different ways depending on the
required level of reusability of the composition.

Fized binding This is the simplest form of binding, where a service is statically
bound into a composition. In case of the example shown in Figure 4, this form
of binding is applied to the lookup service. With it, a default RegistryProvider
is assigned to the lookup service invocation. However, with the tools provided

category

| Legend

xsd:string

System
Output Data Flow
Parameter

= SYS.output

\

Lookup

o

| System
1 Input
: Parameter

RegistryProvider

Copy Split Merge !

bid bids
BidDocument BidDocuments|[]

price

xsd:float

Fig. 4. The first version of the broker composite service using dynamic binding
with structural constraints.

with JOpera it is still possible to replace the registry service, both when the
composition is deployed as well as each time it is started.

Communication level constraints In the case of services, whose interface is bound
to a given provider, it is still possible to dynamically choose the communication
port (or end-point, in WSDL terminology) which should be used to communicate
with it. In both versions of the example, the Reply is constrained to be invoked on
the same port that was used to perform the Receive. In other words, this binding
constraint ensures that the answer of the broker composite service goes back to
the client which submitted the original request. In general, a similar approach
can be used to model constraints related to asynchronous message exchanges
so that a composition can be reused to handle the interaction between different
services that follow the same conversation [5].

Structural constraints As a general note, this example follows the principle of
separating the binding of the service invocation from the strategy used to evalu-
ate the binding. More concretely, the evaluation of a binding can be modeled as
the invocation of a lookup operation of a registry service. In this case, reflection
is used to expose the registry to which the appropriate query is sent. In addition
to JOpera’s internal registry, such lookup funcionality can also be provided by
an external registry (e.g., UDDI [19]) or search engine (e.g., Woogle [8]). Thus,
a binding constraint corresponds to a query to a service registry. Depending
on the capabilities of such registry, a query may be based on metadata iden-
tifying the context that should be used to filter the resulting list of services,
as shown in Figure 4. Not shown explicitly in the example, the query sent to
the Lookup service also includes a structural constraint on the interface of the
services to be returned. In particular, the composition specifies that candidate
services to be bound in place of the Forward invocation must comply with its in-
terface, i.e., they must accept at most one parameter (request) or a certain data
type (a floating point number as prescribed by XML schema [31]). Furthermore,
the result of the services must contain at least a parameter named bid of type
BidDocument. Depending on the matching algorithm employed by the particular

Receive > SYS.soapout

SYS.port

SYS.port SYS.soapin

v
SYS.soapin SYS.soapout

Fig. 5. The second version of the broker composite service using dynamic binding
without any constraints.

lookup service, these structural constraints would allow the composition to be
applied to services returning additional parameters (which are simply discarded
by the composition) and accepting a subset of the required input data parame-
ters, assuming that the service interface defines default values to be used for the
missing input parameters.

Unconstrained bindings In the second version of the example shown in Figure
5, the broker composite service can be reused with minimal constraints on the
content of the messages that are exchanged between client and suppliers. By
using reflection to expose details such as the content of the raw SOAP mes-
sages (the SYS.soapin and SYS.soapout parameters), it is possible to reuse this
composition which only describes the interaction patterns between the services
involved, abstracting from the specific syntax of their interfaces.

More precisely, this broker composite service uses a ContentBasedLookup ser-
vice, which takes the content of a SOAP message to query a registry for com-
patible services that may be able to consume it. As opposed to the previous
example, in order to identify such services, the registry returns the URL to the
WSDL document describing their interface, and the names of the actual service,
operation, and port that should be used. Thus, in addition to exposing the com-
munication port, the dynamic binding of the Forward service invocation selects
all of the parameters identifying the service to be called. Furthermore, it is the
registry’s responsibility to correlate the incoming message with the available ser-
vices which may be able to process it. In the previous example, the extraction
of the metadata to be used to find matching services was done as part of the
receipt of the message.

This example shows that it is possible to use reflection to access the internal
representation of a Web service invocation in order to express a binding which
is left completely free to be evaluated at the latest possible time. Clearly, the
example is a bit extreme, as all assumptions about the syntax of the data re-
ceived and produced by the services have been removed from the composition.
Thus, its expressiveness suffers as it is impossible to verify (neither statically

Receive

SYS.port

SYS.soapout
[messages]<b—{ LookupAndTransform >

Fovar Jo—— (Vo)

Y
SYS.soapin < SYS.soapout

>

SYS.port

Fig. 6. The third version of the broker composite service can adapt messages
before forwarding them to the chosen service end points.

or dynamically) that a service complies with the constraints that are associated
with its interface simply because such information is not included in the com-
position. However, there may be cases for which this level of flexibility is clearly
the intended behavior. For these cases, the example of Figure 5 shows how to
use a ContentBasedLookup service to dynamically find a service matching with a
message that is going to be forwarded to it. In a similar way (Figure 6), it is
possible to extend the registry service with mediation functionality so that the
message used to lookup matching services can be transformed to be consumed
by the selected service, in case it cannot be forwarded directly.

5 Related Work

The need for flexibile bindings was recently brought forward in [13], with the
argument that the requirements of pervasive computing would challenge current
component-based software engineering methodologies. In the context of Web
service composition, this challenge has been addressed in different ways, mostly
by including specific constructs in the corresponding composition languages. In
BPEL [14], as we have exemplified in Section 2, communication end-points can
be reassigned at runtime. Although this gives some limited flexibility, it does not
enhance the reusability of a composition, as all information about the port types
and operations that identify the Web service to be invoked are bound to constant
values. This is not the case in other languages, e.g., XL [12], where flexible
binding is supported by letting the argument of an invoke command represent
an arbitrary XQuery expression, which is evaluated at runtime to choose the
actual service to be invoked.

Reusability of Web service compositions is also the focus of [17], where com-
position “patterns” are modeled in terms of abstract “functionalities”. Following
this approach, the actual Web services come into play at “pattern-specialization
time”, when developers manually select the services which match the function-
alities required by the composition. In the same paper the important trade-off

between the abstraction (i.e., potential reusability) of a pattern and its expres-
siveness is identified. The example of Figure 5 can be interpreted along the same
lines. Given the lack of assumptions made by the composition about its compo-
nents, it is true that the composition can be reused with many services. However,
the expressiveness of the composition suffers, as no constraints are given in order
to choose such services.

6 Conclusion

In this paper we have presented a different perspective on how to reuse Web
service compositions. Not only can compositions of Web services be published
themselves as a Web service, but it should be possible to apply the same com-
position to coordinate different but compatible services.

To do so, we introduced the notion of flexible binding describing the rela-
tionship between a composition and its components. In order to enable reusable
compositions, a binding should be modeled in terms of constraints. These iden-
tify a set of candidate services from which one will be chosen to be invoked after
the evaluation of the corresponding binding. Such constraints can be expressed
in many different ways: for example, queries over classification meta-data or
quality of service information, requirements about the syntax and semantics of
service interfaces, as well as blacklisting and whitelisting of service providers.
Furthermore a binding can be evaluated at different times during the lifecycle
of a composition, going beyond the classic distinction between early and late
binding, we have exemplified several different points in time (registration, com-
position, compilation, deployment, startup, invocation and retry on failure) in
which a binding may be fully evaluated or more constraints can be added to it.
Thanks to the flexible binding linking the description of the composition to the
description of the components, which are kept separate, not only compositions
become reusable but their reliability and testability may be improved.

Given the wide range of different approaches to modeling bindings that have
been introduced in existing composition languages and tools, but also consid-
ering the partial support for flexible binding of the state-of-the-art BPEL4WS
language and related tools, in this paper we suggest a different approach based
on reflection. With it, it is not necessary to include explicit constructs in a
composition language to model flexible binding. Instead, flexible binding can be
considered as a particular application of reflection, whereby — as we have shown
with several examples — parts of the underlying composition infrastructure are
exposed from within the composition language. One advantage of this approach
is that it is possible to distinguish how a service is bound into a composition
from the strategy used to evaluate such binding.

Acknowledgements The authors would like to thank the anonymous re-
viewers for their insightful comments, Tone Hansen for pointing out blacklisting
as a good strategy from the system integrator’s perspective, and Biorn Biérnstad
for his expertise with BPEL.

References

1.

2.

10.

11.

12.

13.

14.

15.

G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, Archi-
tectures and Applications. Springer, November 2003.

A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. McDermott, D. Martin,
S. A. Mcllraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S:
Web Service Description for the Semantic Web. In I. Horrocks and J. Hendler, ed-
itors, Proceedings of the 1st International Semantic Web Conference (ISWC2002),
volume 2342, pages 348-363, Sardinia, Italy, June 2002.

D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic
Composition of e-Services that Export their Behavior. In Proceedings of the 1st
International Conference on Service-Oriented Computing (ICSOC 2003), volume
2910 of LNCS, pages 43-58, Trento, Italy, December 2003. Springer.

A. D. Birrel and B. J. Nelson. Implementing remote procedure calls. ACM Trans-
actions on Computer Systems (TOCS), 2(1):39-59, 1984.

M. Brambilla, S. Ceri, M. Passamani, and A. Riccio. Managing Asynchronous Web
Services Interaction. In Proceedings of the IEEE International Conference on Web
Services (ICWS’04), pages 80-88, San Diego, California, June 2004.

C. Bussler. Semantic Web services: Reflections on Web Service Mediation and
Composition. In Proceedings of the Fourth International Conference on Web Infor-
mation Systems Engineering (WISE 2003), pages 253-260, Roma, Italy, December
2003.

V. De Antonellis, M. Melchiori, B. Pernici, and P. Plebani. A Methodology for
e-Service Substitutability in a Virtual District Environment. In Proceedings of
the 15th International Conference on Advanced Information Systems Engineering
(CAISE 2003), pages 552-567, Klagenfurt, Austria, 2003.

X. Dong, A. Y. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Simlarity Search
for Web Services. In Proceedings of the 30th International Conference on Very
Large Data Bases (VLDB’04), pages 372-383, Toronto, CA, August 2004.

V. Draluk. Discovering Web services: An Overview. In Proceedings of 27th In-
ternational Conference on Very Large Data Bases (VLDB 2001), pages 637-640,
Roma, Italy, 2001.

M. Elson. Concepts of Programming Languages. Scientific Research Associates,
Chicago, 1973.

D. Fensel and C. Bussler. The Web Service Modeling Framework WSMF. FElec-
tronic Commerce Research and Applications, 1(2):113-137, Summer 2002.

D. Florescu, A. Gruenhagen, and D. Kossmann. XL: An XML Programming Lan-
guage for Web Service Specification and Composition. In Proceedings of the 11th
international conference on World Wide Web (WWW’02), pages 65-76, Honolulu,
Hawaii, USA, 2002.

T. Gschwind, M. Jazayeri, and J. Oberleitner. Pervasive Challenges for Software
Components. In Proceedings of the 9th International Workshop on Radical Inno-
vations of Software and Systems Engineering in the Future (RISSEF 2002), pages
152-166, Venice, Italy, October 2002.

IBM, Microsoft, and BEA Systems. Business Process Execution Language for Web
services (BPEL4WS) 1.0, August 2002. http://www.ibm.com/developerworks/
library/ws-bpel.

P. Maes. Concepts and experiments in computational reflection. In Proceedings of
the 2nd Annual Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’87), pages 147-155, Orlando, FL, October 1987.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.
32.

33.

34.

D. J. Mandell and S. A. Mcllraith. Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation. In G. Goos, J. Hartmanis,
and J. van Leeuwen, editors, Proceedings of the Second International Semantic Web
Conference (ISWC2003), volume 2870 of LNCS, pages 227-241, Sanibel Island,
Florida, 2003. Springer.

L. Melloul and A. Fox. Reusable Functional Composition Patterns for Web Ser-
vices. In Proceedings of the Second International Conference on Web Services
(ICWS2004), pages 498-505, July 2004.

D. A. Menascé. Composing Web Services: A QoS View. IEEE Internet Computing,
8(6):88-90, November-December 2004.

Oasis. Universal Description, Discovery and Integration of Web services (UDDI)
Version 3.0, 2002. http://uddi.org/pubs/uddi_v3.htm.

C. Pautasso. JOpera: Process Support for more than Web services. http://www.
iks.ethz.ch/jopera/download.

C. Pautasso. A Flexible System for Visual Service Composition. PhD thesis, Diss.
ETH Nr. 15608, July 2004.

C. Pautasso and G. Alonso. Visual Composition of Web Services. In Proceedings of
the 2003 IEEFE International Symposium on Human-Centric Computing Languages
and Environments (HCC 2003), pages 92-99, Auckland, New Zealand, 2003.

C. Pautasso and G. Alonso. From Web Service Composition to Megaprogramming.
In Proceedings of the 5th VLDB Workshop on Technologies for E-Services (TES-
04), Toronto, Canada, August 2004.

C. Pelzu. Web Services Orchestration and Choreography. COMPUTER, 36(10):46—
52, October 2003.

S. Ran. A framework for discovering Web services with desired quality of services
attributes. In Proc. of the 1st International Conference on Web Services (ICWS
2003), pages 208-213, Las Vegas, 2003.

C. Szyperski. Component technology - what, where, and how? In Proceedings of the
25th International Conference on Software Engineering, pages 684-693, Portland,
Oregon, USA, 2003.

V. Tosic, K. Patel, and B. Pagurek. Reusability Constructs in the Web Service
Offerings Language (WSOL). In Proceedings of the Second International Workshop
on Web Services, E-Business and the Semantic Web (WES 2003), volume 3095 of
LNCS, pages 105-119. Springer, 2004.

W. Tracz. Confessions of a Used Program Salesman. Addison-Wesley, 1995.
W3C. Simple Object Access Protocol (SOAP) 1.1, 2000. http://www.w3.org/TR/
SOAP.

W3C. Web services Definition Language (WSDL) 1.1, 2001. http://wuw.w3.org/
TR/wsdl.

W3C. XML Schema, 2001. http://www.w3.org/TR/xmlschema-0/.

W3C. Web Services Addressing (WS-Addressing), 2004. http://www.w3.org/
Submission/ws-addressing/.

A. M. Zaremski and J. M. Wing. Specification Matching of Software Components.
ACM Transactions on Software Engineering and Methodology (TOSEM), 6(4):333—
369, October 1997.

L.-J. Zhang and M. Jeckle. The Next Big Thing: Web services Collaboration. In
Proceedings of the International Conference on Web services (ICWS-Europe 2008),
pages 1-10, Erfurt, Germany, 2003.

