
Control the Flow:
How to Safely Compose Streaming Services into Business Processes

Biörn Biörnstad, Cesare Pautasso, Gustavo Alonso
Department of Computer Science, ETH Zurich

8092 Zurich, Switzerland
{bioernstad,pautasso,alonso}@inf.ethz.ch

Abstract

Although workflow languages are widely used for com-
posing discrete services, these are not suitable for stream
based interactions. In this paper we address the problem
of how to extend a conventional Web service composition
language with the ability to deal with data streaming ser-
vices. The paper discusses several modeling alternatives
and presents a marker based semantics for safely dealing
with pipelined processing in service compositions. The pa-
per also presents application examples that illustrate the
advantages of the proposed approach.

1. Introduction

Service Oriented Architectures and Web service com-
position are often closely related to workflow and busi-
ness process management tools (BPM) [10]. Such tools are
mostly based on a step-by-step execution model where a
task is invoked, a response received, and then the next task
is scheduled for execution in a similar fashion. The model
corresponds to the request-response nature of many service
interfaces and maps directly to technologies such as Web
services or business process modeling specifications such
as WS-BPEL [13].

Successful as this model is, it also has limitations. These
become apparent when traditional business processes must
deal with services which do not simply react to the ex-
change of messages, but instead proactively produce new
information to be consumed by the business process. Ex-
amples include RSS feeds listing the latest bids at an auc-
tion, result tuples from a data stream management system
(DSMS) [4, 5], stock price tickers, etc. In this paper, we fo-
cus on such streams of business messages. We do not tar-
get audio or video streams which are typically processed in
real-time.

The need for supporting stream based processing in ser-
vice composition tools goes beyond the increasingly impor-
tant ability to cope with services that produce data streams.
As an example, in a customer support system with a high
load, streaming can avoid having to create a process in-
stance for each incoming support request. Instead, a sin-
gle process is started and the requests are processed in a
pipelined manner. Such an approach can have significant

advantages in terms of scalability and expressiveness of
the business process. In standard process description lan-
guages such as WS-BPEL, an incoming request message
creates a new process instance for the handling of the re-
quest. Also, WS-BPEL does not support the pipelined pro-
cessing of multiple stream elements. This means that the re-
sources available to the system might not be used to full ca-
pacity and that an inherent limit on scalability is unneces-
sarily introduced.

In this paper we discuss how to extend traditional, state-
based business process modeling techniques [6, 7, 9] with
the necessary features to integrate streaming data services
and combine them with conventional request response ser-
vices. The paper discusses the problem in detail and pro-
poses minimal but necessary extensions to the semantics of
a business process modeling language to support stream-
ing. Although we present the work in the context of a con-
crete workflow engine (JOpera [16]), the ideas in the pa-
per are generic and can be applied to any business process
engine using a traditional stepwise workflow model (e.g.,
many implementations of WS-BPEL). In the paper we use
the Business Process Modeling Notation (BPMN) [3] to il-
lustrate processes.

The paper is organized as follows. In Section 2 a basic
non-streaming workflow model is introduced. This model
is then extended to introduce streaming services that pro-
vide access to data stream sources (Section 3). Section 4
discusses strategies to avoid collisions of multiple task ex-
ecutions in a pipeline and identifies the problems related
to pipelined execution over multiple stream elements. Sec-
tion 5 presents a solution to the problems introduced by
pipelining. In Section 6 we present example applications of
streaming workflows. Section 7 discusses related work and
Section 8 concludes the paper.

2. Background

2.1. Processes

The main concept in a workflow model is the process. A
process is defined by a directed graph where nodes represent
tasks and edges represent dependencies between tasks [9].
A task is a step to be executed as part of a process. Each task
specifies how it is executed (e.g., which Web service to call)



Figure 1. State machine of a task instance.

and may have several input and output parameters. The or-
der in which the tasks are executed is specified by the task
dependencies.

To be executed, a process needs to be instantiated. A pro-
cess instance consists of the state necessary for the execu-
tion of the process [7]. During its lifetime, an instance goes
through a sequence of states (Figure 1). These states are
used to track the progress of individual tasks and of the en-
tire process. Upon process instantiation a task is Initial. Af-
ter being started it becomes Running and eventually is Fin-
ished. If the execution of a task fails for some reason, this is
indicated with the Failed state.

When a process instance is created, all of its tasks with-
out predecessors (called initial tasks) are started and the
process instance goes to the Running state. The task depen-
dencies specify how the process execution continues from
there.

2.2. Navigation

There are two types of task dependencies: control flow
and data flow. The control flow describes the partial order in
which tasks are executed. A control flow dependency from
task A to task B specifies that B may not execute before A
has reached a certain state, e.g., Finished. According to this
ordering, every task has a (possibly empty) set of immedi-
ate predecessors and successors.

A data flow dependency connects an output parameter
with an input parameter of two respective tasks. After a task
has been executed, data is copied from its output to input
parameters of other tasks according to the data flow graph.
Since a task must not execute until data has been copied to
its input parameters, a data flow dependency implies a con-
trol flow dependency between the corresponding tasks.

When a task terminates, its successors are checked
whether they should be executed. This operation is
called navigation. We assume there is no concurrency in-
volved in the navigation of a process instance. During
each navigation step, the state of the instance is only mod-
ified by the navigation algorithm. Any events occurring
during navigation are buffered and dealt with in a later nav-
igation step. The starting conditions of a task are speci-
fied as an activator and a data-condition. The activator is
a boolean expression over all incoming control flow de-

pendencies. If the activator is satisfied, the data-condition
is evaluated. This condition is a user-defined boolean ex-
pression referencing input parameters of the task and al-
lowing a process to make data-dependent decisions. If
the data-condition also evaluates to true, the correspond-
ing task is started and its state becomes Running. In case the
data-condition is not satisfied, the task becomes Unreach-
able. This state is used in the dead-path-elimination al-
gorithm. Tasks which depend on unreachable tasks also
become unreachable and thus the ”dead path” is made ex-
plicit. Dead-path-elimination helps in determining when
the process instance has finished.

A process instance continues running as long as there are
tasks which are running. As soon as all tasks have reached
a final state (Finished, Failed, Unreachable) the process is
considered to be finished as well. Thus, a process instance
terminates implicitly as opposed to being explicitly stopped
by a special task in the process.

2.3. Loops

A simple loop in a workflow can be used to process
streams by handling one stream element in each loop iter-
ation. Such an approach requires to reset tasks from a final
state to the Initial state (Figure 1). A loop is defined by in-
troducing a cycle in the control flow graph: the first task in
the loop depends on the last task in the loop in order to pos-
sibly reexecute after each loop iteration. The activator of the
first task must be a disjunction (OR) of the incoming depen-
dencies so that the loop can be entered from the predeces-
sor of the first task or from the last task in the loop. The
loop condition is encoded in the data-condition of the first
task and the task following the loop so either of these tasks
gets executed after a loop iteration.

When the last task in a loop iteration has been executed,
the state of the tasks in the loop are reset before the next it-
eration. The end of an iteration is detected by inspecting
the state of the successor task whenever a task finishes. If
the successor is not in the Initial state, this must be the first
task in the loop since it has already been executed. To reset
the loop, all its tasks are put into the Initial state by start-
ing from the first task and recursively following the control
flow. To prevent an infinite recursion due to nested loops
in the control flow, branches are not followed beyond a task
which is already in the Initial state. The algorithm also stops
before resetting the last task in the loop. This task is left in
its current state, so the starting conditions of the first task in
the loop can be satisfied. After the loop has been restarted,
the last task is also reset.

3. Consuming streams

Before we can process data from a stream source we
need to make the data available to the workflow. For dis-
crete data sources (e.g., a database), a process connects to
the source with a dedicated task which returns the retrieved
data as its output. Thus, the task represents the data source
inside the process. In the case of a stream we also repre-
sent a source of streaming data as a task in the process. The



Figure 2. Different alternatives for continuously
consuming data from a stream source.

challenge to do so is that the stream source produces data
continuously. To read the stream from a process, there are
two alternatives: process-driven and source-driven. In the
first case the workflow pulls the data from the source when-
ever it is ready for it. Thus, the workflow cannot be overrun
with too much data since it decides when it is ready to re-
ceive more. In the second case the source pushes the data to
the workflow. The workflow then needs to be ready to re-
ceive the data.

Considering the possibility to pull or push the data into
the workflow, there are three patterns for using a task to read
from the data stream source (Figure 2). In all three cases the
first task provides the data from the stream source and the
other tasks are invoked in sequence to process this data.

3.1. Pull

The first case (Figure 2a) is a conventional loop in which
the last task has a control flow dependency back to the
loop’s first task. In every iteration the source task is invoked
to pull the next item from the stream source. The advan-
tage is the source task will not output data and start the next
task before the entire loop iteration has finished. This guar-
antees that no task in the loop will be started while it is al-
ready running. However, this is also a disadvantage: while
one of the tasks in the loop is active all the others are idle.
This means that the throughput of the workflow is limited
by the length of the entire loop. For some applications this
is inefficient as more than one task could be active concur-
rently.

3.2. Pull-Push

The second option (Figure 2b) is to make the control flow
cycle contain only the source task. Therefore, when the task

Figure 3. Finite state machine for a task instance
with multiple output.

has been executed it is restarted immediately. At every iter-
ation the tasks following the loop are also restarted in order
to process the data (AND-split). This way, the source task
pulls the data from the stream source and pushes it into its
successor task. The advantage of this approach is the pos-
sibility of pipelining. We use the term pipelining the same
way it is used with processor-architectures [8], meaning that
the pipeline (the sequence of tasks) is processing multiple
data elements concurrently, each in a different task. This
can improve the throughput of the workflow compared to
the pull approach.

3.3. Push

The third approach (Figure 2c) goes even further and
makes the loop smaller than one task. The actual loop hap-
pens ”inside” the task because the task runs forever (or
at least as long as there is data coming from the stream
source). This requires to extend the semantics of a task: in
addition to providing output when finishing, a task can also
output data while it is running. We call this feature multi-
ple output. For this, we introduce the Outputting state (Fig-
ure 3). The task is started as usual by making the transi-
tion from the Initial state to Running. When there is out-
put available, the task temporarily goes to Outputting and
then goes back to Running. Successor tasks which want to
consume this output use an Outputting control flow depen-
dency on the source task. If the data stream is not infinite,
the source task will eventually become Finished. Compared
to the push-pull, this approach models an end-to-end push
delivery of the stream data. The advantage is that there is
no need to define an explicit control flow loop because the
state of the task reflects the state of the stream source. Fur-
thermore, the workflow can deal with the end of the stream
explicitly through a task with a Finished dependency on the
source task.

4. Pipelined execution

In the previous section, we have introduced task
pipelines which are started either by a loop with an
AND-split or by a task which produces multiple out-
puts. However, the model presented in Section 2 has some
safety problems when it is used to model pipelined work-
flow execution. Considering that tasks may take differ-
ent amounts of time to execute, it might happen that while



a task T is processing a stream element, its predecessor fin-
ishes processing the next element. In this case task T would
be restarted. This is problematic because the task’s out-
put parameters would need to be shared between the paral-
lel overlapping executions.

To address this, we need to define what should happen
if a task becomes ready to be started while it is already
running. The following briefly compares three ways to deal
with such an execution opportunity discussing their impact
on the semantics of tasks.

4.1. Multiple input

The first alternative is for the new input to be provided
to the running task execution while the task is in the Run-
ning state. This kind of data handling allows a task to pro-
cess multiple elements of a stream during one execution.
This is symmetric to the multiple output feature of source
tasks (Section 3.3). An important limitation of this approach
is that the multiple input feature is not compatible with non-
streaming tasks since these assume discrete input and out-
put.

If a task supports both multiple input and multiple out-
put, it becomes a ”stream operator”. Such an operator can
be used to filter elements of a stream or to calculate aggre-
gate functions as the state of a task persists over multiple
stream elements. The model of a stream operator task also
includes the Outputting state in order to produce partial re-
sults during an execution (Figure 3). In [1] the authors take
a similar approach and employ stream operators as tasks to
process streaming data.

We have decided not to pursue this approach for two rea-
sons. One is that it forces the composition engine to be
aware of the nature of the tasks and distinguish between
streaming tasks and non-streaming tasks – not to mention
the difficulty to combine them. The other is that it moves all
the problems of dealing with streaming data to the applica-
tion, with the engine acting solely as a configuration tool of
a data stream processing pipeline.

4.2. Multiple instances

Another option is to create a new instance of the task
when data is available in the pipeline and execute the new
instance concurrently with existing ones. This behavior is
similar to the ”Multiple instances” workflow patterns [20].
The approach, however, leads to several non-trivial prob-
lems. From the engine point of view, the state pertaining
to every instance that is created to process each stream ele-
ment needs to be stored somewhere, thereby adding signif-
icant overhead. From the programming point of view, the
synchronization of instance termination and starting of suc-
cessor tasks needs to be addressed. This is not easy as there
might be constraints on the order in which stream elements
should be processed.

Due to the additional problems it creates both at the en-
gine design and the semantics levels, we do not pursue this
design option any further in this paper.

4.3. Queue

Given that task instances should not be required to ac-
cept multiple inputs once they are started and considering
the problems of starting multiple instances of the same task
in parallel, the third alternative we present is to buffer the
task input in a queue so that only one task instance is run-
ning at all times.

With this approach the results produced by predecessor
tasks are copied into the successor task’s input parameters
as usual. However, if the task is running, the data is buffered
into a queue of execution requests instead of restarting the
task over the new input data. Once the task completes its ex-
ecution, it fetches its next input from this queue when it is
about to be started again.

Compared to the multiple input and multiple instances
strategies, the queueing approach makes no additional as-
sumptions about the task execution capabilities. All stream
elements are processed in order, and for every element the
task is invoked without having to be aware of the stream.
Therefore, we choose this strategy to control the pipelines
in processes.

Although, as a first approximation, queues may have un-
limited capacity and thus are able to handle an infinite num-
ber of execution opportunities, in order to implement this
semantics the engine can only provide queues of limited
capacity. When a queue gets full, execution opportunities
have to be ignored because the input data can no longer be
queued.

Without loss of generality, this is equivalent to having
the data buffered in the input parameters of the tasks as the
queue does not have any capacity left for the next input data.
For a simple sequence of two tasks A and B we observe two
different problems:

Output overwriting: A finishes and triggers the execution
of B. While B is running, A finishes again. This time the ex-
ecution of B is deferred because B is running. Later, while B
is still running, A finishes yet another time. A now has over-
written its previous output with the new output. However,
B could not consume the old output before it was overwrit-
ten, so the corresponding stream element is lost.

State ambiguity: A executes and becomes Finished
which triggers the execution of B. After B has fin-
ished, its starting conditions are reevaluated since A might
have executed and become Finished again in the mean-
time. Although A has not been reexecuted, the starting
conditions are satisfied again because A is still in the Fin-
ished state. The problem here is that the navigation
algorithm cannot distinguish between different execu-
tions of a task since navigation is state-based and there is
only one Finished state.

4.4. Problems of merges in pipelines

Most workflow processes employ a control flow merge in
some way. Independent of which strategy is chosen for han-
dling execution opportunities, when merges are used with
pipelining, our basic model (Section 2) exhibits two prob-
lems. These are the same problems as when deferring ex-



Figure 4. A simple process with a synchronous
merge.

ecution opportunities (Section 4.3), but interestingly, they
occur in different situations.

In the following examples we consider a process with
a task C which has two predecessors A and B (Figure 4).
C waits for both predecessors to finish before starting, i.e.,
the control flow is merged synchronously. A and B can exe-
cute multiple times because they are fed with data from the
source tasks.

For the state ambiguity problem, we assume both tasks A
and B are executed and become Finished whereupon C may
be started. Then, after C has finished, task A is executed
again. The finishing of A triggers the evaluation of the start-
ing conditions of C. Since A is again Finished and B is still
Finished, C will be started another time, although B has not
provided any new data. Thus, the synchronizing merge has
become non-synchronizing after the first stream element
has been processed. The problem is again related to the am-
biguity of the Finished state. When the starting conditions
are evaluated, it is indistinguishable whether the predeces-
sors have been reexecuted or not since this was checked last
time.

For the output overwriting problem, assume A is exe-
cuted and finishes. Then, the starting conditions of C are
evaluated but are not satisfied because B has not yet been
executed. Before B is executed, A is executed once more
which again leads to the problem of overwriting the out-
put before it has been consumed by the successor.

5. Flow control markers

In this section we propose solutions to the problems of
output overwriting and state ambiguity and show how to in-
corporate these solutions into the basic process model.

5.1. Flow control and data freshness

The output overwriting problem shows that there is a
need for controlling the flow of information between tasks.
To ensure that a consumer of a stream is not overloaded,
flow control is a mechanism used to slow down the stream
producer. In general, when the consumer receives too much
data it informs the producer which will then lower its out-
put rate. To prevent a task from overwriting its previous

output we extend the basic model with the following re-
striction: a task cannot be restarted before its output has
been consumed. In addition to evaluating the activator and
data-condition of a task, the navigation algorithm will en-
force this restriction before executing a task. The restric-
tion guarantees that the output of a task execution can al-
ways be stored in the output parameters and does not need
to be buffered with other means.

To overcome the state ambiguity problem, a task needs
to know when a predecessor has finished but the task has
not yet learned about this fact. Therefore, we introduce a
boolean freshness marker which is attached to each control
flow dependency in a process instance. The semantics of the
marker is the following. A set marker means that the corre-
sponding predecessor has reached a new state (or reached
the same state again). A cleared marker means that the cor-
responding successor has learned about the new state.

5.2. Marker mechanism

When two tasks depend on each other, it means that they
exchange information. The information consists of the state
of the predecessor and the content of its output parameters.
The state of a process instance is extended with a boolean
marker for every pair of tasks with a control flow depen-
dency. If the tasks in the pair have a cyclic dependency,
then there are two markers, one for each direction of de-
pendency. Every marker has a corresponding predecessor
task and a successor task where the successor depends on
the predecessor. Markers are used to control the informa-
tion exchange between the two tasks. A marker has the fol-
lowing semantics. When it is set, the predecessor has pro-
duced new information. When it is cleared, the successor
has consumed the information produced by the predeces-
sor. Markers are initially cleared.

Figure 5 shows the state machine for a task comple-
mented with the conditions and actions imposed by the
marker mechanism. The task supports multiple output and
the Unreachable and Failed states have been left out for
simplicity. The mechanism introduces the restriction that
markers towards predecessors must be set and markers to-
wards successors must be cleared in order for a task to
be executed. This translates into requiring that there must
be information available from the predecessor (freshness
marker) and the information towards successors must have
been consumed (flow control).

Markers influence the execution cycle of a task (from Ini-
tial to Finished) as follows. Before evaluating the starting
conditions, the markers towards successors need to be in-
spected. If at least one such marker is set, the task may not
be started. This makes sure the previously produced out-
put of the task is not overwritten (flow control). Otherwise,
if all those markers are cleared, the starting conditions are
checked.

When evaluating the activator, the state of the markers
towards predecessors needs to be taken into account (fresh-
ness markers). A control flow dependency is not satisfied
unless the corresponding marker is set. This prevents that



Figure 5. Task state machine extended with condi-
tions and actions to implement the marker mech-
anism.

the evaluation of the starting conditions uses stale informa-
tion (state ambiguity).

If the activator is satisfied, all markers towards predeces-
sors are cleared, indicating that the corresponding informa-
tion has been consumed. Because these markers have been
cleared, the evaluation of the starting conditions of all pre-
decessors is scheduled. These tasks might only be waiting
for their output to be consumed (flow control) and could
therefore be ready to start.

Then, the data-condition is evaluated as usual. When
both the activator and the data-condition are satisfied, the
task is started.

When a task reaches the Finished or Outputting state, ev-
ery control flow dependency towards a successor is evalu-
ated. If a dependency is satisfied, then the corresponding
marker is set. This indicates to successors that new infor-
mation is available and prevents the task itself from over-
writing its output. If the task is in the Outputting state, it
does not return to the Running state before the markers have
been cleared. If the task is in the Finished state and it does
not have any successors, the evaluation of its starting con-
ditions is triggered immediately. Since there are no outgo-
ing dependencies, the task can restart right away if informa-
tion has become available from predecessors.

Figure 6 summarizes the interaction of the marker mech-
anism with the state transitions of a task using an example
sequence of three tasks. The time in the diagram has been
discretized for the sake of simplicity.

5.3. Impact of the marker mechanism

The marker mechanism solves both the problem of out-
put overwriting and the state ambiguity. The overwriting of
output is avoided as follows. When a task produces output
by becoming Finished or Outputting it sets the markers to-
wards its successors. As long as these markers are set, the
task does not enter the Running state again. Therefore, the
task cannot execute and produce new output as long a the
markers are set. When successors have consumed the out-
put, they clear the corresponding markers. Thus, when all
markers towards successors have been cleared, this means
that the output has been consumed completely and the task
can safely be reexecuted.

Figure 6. Example interaction of the marker mech-
anism with the state transitions of tasks.

The state ambiguity problem is solved as follows. When
a task produces output, it sets the markers towards its suc-
cessors. Each marker is only set if the corresponding con-
trol flow dependency matches the state which the task just
reached (e.g., Finished or Outputting).

When the activator of a task is evaluated, the markers
towards predecessors are taken into account. If a marker
is cleared, the corresponding control flow dependency is
not satisfied. If the activator is satisfied (which means that
all the corresponding markers are set), all markers towards
predecessors are cleared, indicating that the corresponding
information has been consumed. If the starting conditions
were immediately revaluated, the activator would not be sat-
isfied, even if all predecessors have the required state. This
is because the markers are cleared. The activator will not be
satisfied until all predecessors have produced fresh informa-
tion by reaching a new state or the same state again and set-
ting the corresponding marker.

6. Applications

6.1. High-volume account creation

At some universities several thousand freshmen enroll
every year. When a new student registers, among other
things an account needs to be created for accessing the uni-
versity’s computers.

We assume that proper management interfaces are avail-
able so that a workflow system can be used to set up new ac-
counts. In order to sustain a high volume of account creation
requests, a single process instance is used and requests are
streamed through it. This avoids the overhead of creating
a process instance for each request and leverages pipelin-
ing inside the process. The process picks up requests from
a persistent queue at maximum speed and places its replies
into a different queue. The throughput of the process is lim-
ited by the slowest task in the pipeline. Therefore, the pro-



Figure 7. Account creation process.

cess should consist of a high number of tasks with even ex-
ecution times.

Figure 7 represents the account creation process. Re-
quests sent to the system contain information on the ac-
count to be created and the credentials of the requestor.
The process picks up a request from the queue and vali-
dates it (syntax, authorization). Then, the status of the stu-
dent is checked against a database. After the checks, the ac-
count is created, a home directory installed and permissions
on the home directory are set to give the new account ac-
cess. Finally, a reply indicating the successful account cre-
ation is sent to a queue. If any of the steps in the account
setup fails, an error is sent back to the originator of the re-
quest using the ”send error” task.

With a case-driven approach, a process instance would
be created for every incoming request. When the number of
requests is as large as in this example, it becomes a serious
challenge to manage and execute all the process instances
in parallel. With the stream-based workflow this scalability
problem is solved without having to modify the existing ser-
vices. These services are still invoked in a request-response
manner and do not need to be aware of the pipelined execu-
tion.

6.2. Shell script pipelines

Unix shells provide convenient ways of combining sev-
eral commands into a pipeline, saving the user from
storing intermediate results in temporary files. How-
ever, on a shell’s one-dimensional command line, only
linear pipelines can be built by connecting the input of pro-
grams with the output of others.

A workflow process provides an easy way to design
such a pipeline as an arbitrary graph where the data can

Figure 8. File refactoring process.

be duplicated to several tasks and routed according to data-
based conditions. If the partial results of the commands are
streamed through the process, pipelining can be used.

Figure 8 shows an example modeling the refactoring
process over a collection of files. It first scans a directory
containing source files written in C and Java. Every file is
checked if it contains a certain text string. If this is the case,
the code refactoring is performed on the file. Depending on
the programming language, a different refactoring program
is used. The refactored files are then recompiled by a suit-
able compiler. Also, refactored files need to have their MD5
sum recomputed and updated in an index file which can be
done in parallel to the compiling. Since every file found by
the ”find” task is output to the next task (Outputting depen-
dency), files are refactored while the ”find” task is looking
for more files to process.

This example shows how traditional pipelines of pro-
grams can be augmented with conditional branches. Also,
programs which are not aware of streams, e.g. compilers,
can easily be integrated with programs which produce a
stream, e.g., find which outputs a stream of file names.

7. Related Work

There are a number of workflow engines that support
streaming to some degree. OSIRIS-SE [1] aims at handling
large amounts of continuous data but uses a different pro-
gramming model than most systems for this purpose. Here,
a network of stream operators is setup by running a work-
flow process. The tasks of the process instantiate the opera-
tors which are then interconnected by FIFO-queues [2]. The
engine has then little control over these tasks that follow the
multiple input/output model described in Section 4.1.

An example of a tool supporting pipelined execution
over non-streaming Web and Grid services is Triana [11].
Although lacking support for control flow branches and ex-
ception handling, its language based on dataflow networks
fits with the queue semantics described in Section 4.3. Fur-



thermore, Triana supports the continuous re-execution of a
process such that tasks are invoked over each stream ele-
ment.

Like Triana, SCIRun [15] is based on a dataflow net-
work. Tasks communicate through FIFO-queues and can
additionally produce multiple results during one execution
similarly to the push mechanism described in Section 3.3.

YAWL [19, 18] is a workflow language and system based
on the analysis of workflow patterns [20] and inspired by
Petri nets. The notions of place and token in YAWL seem
suitable for stream processing. However, the system uses
global variables for the data transfer between tasks. Since
neither the language nor the system supports flow control,
the data in global variables may get overwritten if tasks are
executed repeatedly in order to process a stream.

The marker mechanism can be compared to a finite ca-
pacity Petri net [12] were the markers are places with a ca-
pacity of one token and tasks are transitions. It has been
studied how Petri nets can be applied to workflow mod-
eling [17]. However, it has also been shown that Petri
nets have limitations when used to model complex work-
flows [19].

The newest version of UML [14] recognizes the need
for streaming data transfer between actions in activity mod-
els. It allows inputs and outputs of actions to be declared as
streaming. During one execution, an action may consume
multiple tokens from a streaming input and produce multi-
ple tokens on a streaming output.

8. Conclusion

In this paper we have analyzed the problem of integrat-
ing data streaming services into a service composition tool
based on a standard step-by-step process model such as
those based on WS-BPEL or conventional workflow en-
gines. We did this by using loops, extending the notion of
task, and modifying the semantics of the language to ac-
commodate pipelined processing of data within the business
process. Once activated, tasks consuming stream sources
run continuously and a push mechanism is provided to no-
tify the workflow about the availability of new data ele-
ments. Downstream, we showed how the workflow exe-
cution can be pipelined over each stream element. Due to
the heterogeneity of the tasks and their highly variable ex-
ecution time, we compared different approaches to avoid
pipeline collisions. To safely achieve flow control, a simple
solution based on labeling task dependencies with markers
was presented. Although this causes slow tasks to block the
execution of upstream tasks, markers can be implemented
using finite capacity queues, decoupling stream producers
from consumers by evening out temporary differences in
processing speed.

Acknowledgements

Part of this work is funded by the European projects: IST-FP6-
004559 SODIUM (Service Oriented Development In a Unified
fraMework) and IST-FP6-15964 AEOLUS (Algorithmic Princi-
ples for Building Efficient Overlay Computers).

References

[1] G. Brettlecker, H. Schuldt, and R. Schatz. Hyperdatabases
for Peer–to–Peer Data Stream Processing. In Proc. of ICWS
Conf., pages 358–366, San Diego, CA, USA, 2004.

[2] G. Brettlecker, H. Schuldt, and H.-J. Schek. Towards reliable
data stream processing with osiris-se. In Proc. of BTW Conf.,
pages 405–414, Karlsruhe, Germany, 2005.

[3] Business Process Management Initiative. Business Process
Modeling Notation (BPMN), Version 1.0, May 2004.

[4] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. B. Zdonik.
Monitoring streams - a new class of data management appli-
cations. In VLDB, pages 215–226, 2002.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, and M. A. Shah. Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain
World. In CIDR, 2003.

[6] M. Dumas, W. M. P. van der Aalst, and A. H. M. ter Hof-
stede, editors. Process-Aware Information Systems. Wiley,
2005.

[7] D. Georgakopoulos, M. F. Hornick, and A. P. Sheth. An
overview of workflow management: From process modelling
to workflow automation infrastructure. Distributed and Par-
allel Databases, 3(2):119–153, April 1995.

[8] K. Hwang and F. A. Briggs. Computer Architectures and
Parallel Processing. McGraw-Hill, 1985.

[9] F. Leymann and D. Roller. Production Workflow: Concepts
and Techniques. Prentice Hall, 1999.

[10] F. Leymann, D. Roller, and M.-T. Schmidt. Web services
and business process management. IBM Systems Journal,
41(2):198–211, 2002.

[11] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana: A
Graphical Web Service Composition and Execution Toolkit.
In Proceedings of the IEEE International Conference on Web
Services (ICWS’04), pages 514–524. IEEE Computer Soci-
ety, 2004.

[12] T. Murata. Petri Nets: Properties, Analysis and Applica-
tions. In Proceedings of the IEEE, volume 77, pages 541–
580, April 1989.

[13] OASIS. Web Services Business Process Execution Language
Version 2.0 (working draft). OASIS, February 2005.

[14] Object Management Group. Unified Modeling Language:
Superstructure, version 2.0, August 2005.

[15] S. G. Parker. The SCIRun Problem Solving Environment and
Computational Steering Software System. PhD thesis, The
University of Utah, 1999.

[16] C. Pautasso. A Flexible System for Visual Service Composi-
tion. PhD thesis, Diss. ETH Nr. 15608, July 2004.

[17] W. M. P. van der Aalst. The application of petri nets to work-
flow management. Journal of Circuits, Systems, and Com-
puters, 8(1):21–66, 1998.

[18] W. M. P. van der Aalst, L. Aldred, M. Dumas, and A. H. M.
ter Hofstede. Design and implementation of the YAWL sys-
tem. In Proceedings of The 16th International Conference
on Advanced Information Systems Engineering (CAiSE 04),
June 2004.

[19] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: Yet
another workflow language. Information Systems, 30:245–
275, June 2005.

[20] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patterns. Distributed
and Parallel Databases, 14(3):5–51, July 2003.


