
Techniques for
Composing REST services

Cesare Pautasso
Faculty of Informatics

University of Lugano, Switzerland

c.pautasso@ieee.org
http://www.pautasso.info

©2009 - Cesare Pautasso 2

Abstract
 Novel trends in Web services technology challenge

the assumptions made by current standards for
process-based service composition. For example,
most existing RESTful Web service APIs (which do
not rely on the Web Service Description Language),
cannot natively be composed using the WS-BPEL
language.

 In this talk we introduce the problem of composing
RESTful services and compare it to Web 2.0 service
mashups. We cover several real-world examples
demonstrating how existing composition languages
can be evolved to cope with REST. We conclude by
showing that the uniform interface and hyper-
linking capabilities of RESTful services provides an
excellent abstraction for exposing in a controlled
way the state of business process as a resource.

©2009 - Cesare Pautasso 3

About Cesare Pautasso
 Assistant Professor at the Faculty of Informatics,

University of Lugano, Switzerland (since Sept 2007)
Research Projects:
 SOSOA – Self- Organizing Service Oriented Architectures
 CLAVOS – Continuous Lifelong Analysis and Verification of

Open Services
 BPEL for REST

 Researcher at IBM Zurich Research Lab (2007)
 Post- Doc at ETH Zürich
 Software:

JOpera: Process Support for more than Web services
http://www.jopera.org/

 Ph.D. at ETH Zürich, Switzerland (2004)

 Representations:
http://www.pautasso.info/ (Web)
http://twitter.com/pautasso/ (Twitter Feed)

©2009 - Cesare Pautasso 4

Why Composition?

 Composition is the key SOA principle
with the goal of enabling

service reuse

©2009 - Cesare Pautasso 5

 Uniform Interface (Reuse Contract)
 Status Codes (Reuse Metadata)
 Representations (Reuse Media Types)
 Middleware (Reuse caching, security,

load balancing, proxies components)

REST and Reuse

©2009 - Cesare Pautasso 6

 Web Services expose their
data and functionality trough
resources identified by URI

 Uniform Interface Principle:
Clients interact with resources
through a fix set of verbs.
Example HTTP:
GET (read), POST (create), PUT (update), DELETE

 Multiple representations for the same resource
 Hyperlinks model resource relationships and valid

state transitions for dynamic protocol description
and discovery

REST in one slide

R
PUT

DELETE

GET

POST

©2009 - Cesare Pautasso 7

 Uniform Interface (Reuse Contract)
 Status Codes (Reuse Metadata)
 Representations (Reuse Media Types)
 Middleware (Reuse caching, security,

load balancing, proxies components)

 Yes, but what about reusing entire RESTful
services?

REST and Reuse

©2009 - Cesare Pautasso 8

1. Defining RESTful service composition

2. Example: DoodleMap

3. What about mashups?

4. BPM and REST

RESTful Composition Techniques

©2009 - Cesare Pautasso 9

REST Architectural Elements

User Agent Origin Server

Cache

Proxy

Gateway

Connector (HTTP)

Client/Server Layered CacheStateless Communication

©2009 - Cesare Pautasso 10

Basic Setup

User Agent Origin Server

HTTP

Caching
User Agent

Origin Server

HTTP

User Agent Caching
Origin Server

HTTP

Adding Caching

Caching
User Agent

Caching
Origin Server

HTTP

©2009 - Cesare Pautasso 11

Proxy or Gateway?

Client Proxy
HTTP Origin Server

HTTP

Client Gateway
HTTP

Origin Server
HTTP

Intermediaries forward (and may translate) requests and responses

A proxy is chosen by the Client (for caching, or access control)

The use of a gateway (or reverse proxy) is imposed by the server

©2009 - Cesare Pautasso 12

REST Middleware for Scalability

Origin
Server

Clients

Proxy/Gateway

 One example of REST middleware is to help
with the scalability of a server, which may
need to service a very large number of
clients

Cache

©2009 - Cesare Pautasso 13

REST Middleware for Composition

Origin
Server

Clients

Proxy/Gateway

 Composition shifts the attention to the client
which should consume and aggregate from
many servers

©2009 - Cesare Pautasso 14

Servers

REST Middleware for Composition

Origin Client

 The “proxy” intermediate element which
aggregates the resources provided by
multiple servers plays the role of the
composition controller of a composite
RESTful service

Composite
RESTful
service

©2009 - Cesare Pautasso 15

Composite Resources

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2009 - Cesare Pautasso 16

Composite Resources

State
R

State
S

C

R S

 The composite resource only aggregates the
state of its component resources

©2009 - Cesare Pautasso 17

Composite Resources

State
R

State
S

State
C

C

R S

 The composite resource augments (or caches)
the state of its component resources

©2009 - Cesare Pautasso 18

 Web Services expose their
data and functionality trough
resources identified by URI

 Uniform Interface Principle:
Clients interact with resources
through a fix set of verbs.
Example HTTP:
GET (read), POST (create), PUT (update), DELETE

 Multiple representations for the same resource
 Hyperlinks model resource relationships and valid

state transitions for dynamic protocol description
and discovery

Enter HATEOAS

R
PUT

DELETE

GET

POST

©2009 - Cesare Pautasso 19

Composite Representations

PUT

PUT

DELETE

DELETE

GET

GETPOST

POST
C

R
S

LinkR

LinkS

Composite
Representation

©2009 - Cesare Pautasso 20

Composite Representation Pattern

Composite
Representation

Origin
Servers

Client

Origin
Server

 A composite representation is interpreted by
the client that follows its hyperlinks and
aggregates the state of the referenced
component resources

©2009 - Cesare Pautasso 21

Bringing it all together

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

 A composite representation can be
produced by a composite service too

Origin
Servers

©2009 - Cesare Pautasso 22

Doodle Map Example

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

 Vote on a meeting place based on its
geographic location

Origin
Servers

©2009 - Cesare Pautasso 23

1. Composite Resource

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2009 - Cesare Pautasso 24

1. Composite Resource

GET

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2009 - Cesare Pautasso 25

2. Composite Representation

GET

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

DM
LinkG

LinkC

GET
G

LinkD

©2009 - Cesare Pautasso 26

Demo

©2009 - Cesare Pautasso 27

Was it just a Mashup?

Mashup
REST

Composition

Mashup

(It depends on the definition of Mashup)

©2009 - Cesare Pautasso 28

 Read-only vs. Read/Write

Moving state around

PUT

DELETE

GET

POST

PUT

DELETE

GET

POST

C

R
PUT

DELETE

GET

POST

S

©2009 - Cesare Pautasso 29

 Read-only vs. Read/write

Simply aggregating data (feeds)

GET

GET
C

R
GET

S

©2009 - Cesare Pautasso 30

 UI vs. API Composition

Is your composition reusable?

Composite
Representation

Origin
Servers

Client

Composite
RESTful
service

Origin
Servers

API

UI Reusable
services vs.
Reusable
Widgets

©2009 - Cesare Pautasso 31

 Can you always do this
from a web browser?

Single-Origin Sandbox

Client

Composite
RESTful
service

Origin
Servers

Origin
Servers

Composite
Representation

©2009 - Cesare Pautasso 32

 Security Policies on the client may not
always allow it to aggregate data from
multiple different sources

Single-Origin Sandbox

Composite
Representation

Client

Composite
RESTful
service

N Origin
Servers

1 Origin Server

©2009 - Cesare Pautasso 33

Complementary

Mashup REST
Composition

Mashup

Read-Only
Read/Write

API
UI

Situational
Reusable

Service
Sandboxed

©2009 - Cesare Pautasso 34

1. Defining RESTful service composition

2. Example: DoodleMap

3. What about mashups?

4. BPM and REST

RESTful Composition Techniques

©2009 - Cesare Pautasso 35

The WS-BPEL process
model is layered on top of
the service model defined
by WSDL 1.1. […]
Both the process and its
partners are exposed as
WSDL services

[BPEL 2.0 Standard, Section 3]

Web Service Composition Today

WSDL 1.1

WS-BPEL 2.0

©2009 - Cesare Pautasso 36

RESTful Web Services APIs…

WSDL 1.1

…do not
use
WSDL
1.1

©2009 - Cesare Pautasso 37

WSDL 2.0 HTTP Binding can wrap RESTful Web Services

BPEL/WSDL 2.0

R

WSDL 2.0BPEL PUT

DELETE

GET

POST

Operations

HTTP Binding

Op_1
Op_2
Op_3
Op_4

...

<Invoke Op_1>

<Invoke Op_2>

...

<Invoke Op_3>

<Invoke Op_4>

...

Op_1 R PUT
Op_2 R GET
Op_3 R POST
Op_4 R DELETE

Op URI Method

R PUT
R GET
R POST
R DELETE

(WS-BPEL 2.0 does not support WSDL 2.0)

©2009 - Cesare Pautasso 38

BPM
Workflow

Languages

RESTful
Web Service
Composition

©2009 - Cesare Pautasso 39

1. Abstract Workflow
 Service invocation technology does not matter

2. Concrete Workflow
 Expose service invocation

technologies as explicit constructs
in the workflow language

3. RESTful Workflow
 Workflow as one kind of resource

exposed by a RESTful service

Solutions

BPM
Workflow

Languages

RESTful
Web Service
Composition

BPM
Workflow

Languages

RESTful
Web Service
Composition

BPM
Workflow

Languages

RESTful
Web Service
Composition

©2009 - Cesare Pautasso 40

WSDL 2.0 HTTP Binding can wrap RESTful Web Services

BPEL/WSDL 2.0

R

WSDL 2.0BPEL PUT

DELETE

GET

POST

Operations

HTTP Binding

Op_1
Op_2
Op_3
Op_4

...

<Invoke Op_1>

<Invoke Op_2>

...

<Invoke Op_3>

<Invoke Op_4>

...

Op_1 R PUT
Op_2 R GET
Op_3 R POST
Op_4 R DELETE

Op URI Method

R PUT
R GET
R POST
R DELETE

(WS-BPEL 2.0 does not support WSDL 2.0)

©2009 - Cesare Pautasso 41

Make REST interaction primitives first-class language
constructs

BPEL for REST

R

BPEL for REST PUT

DELETE

GET

POST

...

<Put R>

<Get R>

...

<Post R>

<Delete R>

...

<Put R>

<Get R>

<Post R>

<Delete R>

©2009 - Cesare Pautasso 42

 Dynamically publish resources from BPEL
processes and handle client requests

BPEL for REST
<Resource P>

<onGet>

<Put R>

<Get S>

</onGet>

<Post R>

<Delete S>

</onDelete>

</Resource>

<onDelete>

R

PUT

DELETE

GET

POST

S

PUT

DELETE

GET

POST

P

PUT

DELETE

GET

POST

BPEL for REST

©2009 - Cesare Pautasso 43

RESTful Workflows

P

R

PUT

DELETE

GET

POST

R

PUT

DELETE

GET

POST

Use the resource interface
abstraction to publish
the state of the workflow

©2009 - Cesare Pautasso 44

DoodleMap as RESTful workflow

©2009 - Cesare Pautasso 45

 Applying the SOA composition principle to
REST gives interesting results
 Thanks to hyperlinks, REST brings a new

(more dynamic and loosely coupled)
twist to SOA composition
 Composing RESTful services helps to build

mashups, but is different
 A RESTful API is the perfect abstraction for

publishing the state of a workflow

Conclusion

© 46

 R. Fielding, Architectural Styles and the Design of Network-
based Software Architectures, PhD Thesis,
University of California, Irvine, 2000

 C. Pautasso, O. Zimmermann, F. Leymann, RESTful Web
Services vs. Big Web Services: Making the Right Architectural
Decision, Proc. of the 17th International World Wide Web
Conference (WWW2008), Bejing, China, April 2008

 C. Pautasso, BPEL for REST, Proc. of the 7th International
Conference on Business Process Management
(BPM 2008), Milano, Italy, September 2008

 C. Pautasso, Composing RESTful Services with JOpera,
In: Proc. of the International Conference on Software
Composition (SC2009), July 2009, Zurich, Switzerland.

References

©2009 - Cesare Pautasso 47

Raj Balasubramanian,
Benjamin Carlyle,
Thomas Erl,
Cesare Pautasso,
SOA with REST,
Prentice Hall,
to appear in 2010

