
From Web Service Composition to

Megaprogramming

Cesare Pautasso, Gustavo Alonso

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)

ETH Zentrum, 8092 Zürich, Switzerland
{pautasso,alonso}@inf.ethz.ch

Abstract. With the emergence of Web service technologies, it has be-
come possible to use high level megaprogramming models and visual
tools to easily build distributed systems using Web services as reusable
components. However, when attempting to apply the Web service compo-
sition paradigm in practical settings, some limitations become apparent.
First of all, all kinds of existing “legacy” components must be wrapped
as Web services, incurring in additional development, maintenance, and
unnecessary runtime overheads. Second, current implementations of Web
service protocols guarantee interoperability at high runtime costs, which
justifies the composition of only coarse-grained Web services. To address
these limitations and support the composition of also fine-grained ser-
vices, in this paper we generalize the notion of service by introducing
an open service meta-model. This offers freedom of choice between dif-
ferent types of services, which also include, but are not limited to, Web
services. As a consequence, we argue that service composition – defined
at the level of service interfaces – should be orthogonal from the mech-
anisms and the protocols which are used to access the actual service
implementations.

1 Introduction

Megaprogramming [23] was originally introduced to describe the large scale com-
position of megamodules, capturing the functionality of services provided by
large, independent organizations. Megaprogramming prescribed a clear separa-
tion of the description of the externally accessible data structures and operations
of a megamodule from the mechanisms used to interact with it. It also empha-
sized the importance of mediation between incompatibile megamodule descrip-
tions.

Some of the existing languages for Web service composition (e.g. [5,11]) do
not yet completely fulfill the megaprogramming paradigm because the services
to be composed are all assumed to be of a single type: Web services. Clearly,

Part of this work is supported by grants from the Hasler Foundation (DISC Project
No. 1820) and the Swiss Federal Office for Education and Science (ADAPT, BBW
Project No. 02.0254 / EU IST-2001-37126).



when facing software integration problems at an Internet-wide scale, Web ser-
vices seem to be the most appropriate tool [8]. However, for many other kinds of
service integration scenarios, it would be an unnecessary restriction to assume
that all services that are to be composed must all be Web service compliant.
In fact, there are many existing, well established service access protocols (e.g.,
RMI, CORBA, JMS, HTTP) that should not necessarily be considered as out of
date, when compared to Web services [1]. Furthermore, the mediation between
incompatibile services turns out to be a very important requirement for suc-
cessful integration projects. Thus, unless such “mediation services” themselves
are encapsulated behind a Web service interface, it is not possible to efficiently
address this important issue with current Web service composition languages [6].

In this paper, we show how we applied megaprogramming concepts to gen-
eralize Web service composition in the context of the JOpera project [15]. Web
services can be considered as one kind of service, which is very useful, e.g., as it
offers syntactical interoperability with remote services in a platform independent
way [21,22]. However, these benefits come at a price of a very high access over-
head. This is justified for invoking coarse-grained services, for which the internal
execution time dominates the overall invocation time. For other kinds of ser-
vices, i.e., fine-grained services, which perform a small computation, or for local
services, which are published within the same organization doing the service in-
tegration, it may be reasonable to employ other kinds of access mechanisms and
protocols. This way, it is possible to choose the most appropriate service type
in terms of the effort required to integrate it with others with the possibility of
minimizing the corresponding invocation overhead. As it would be impossible to
provide out-of-the-box support for all possible kinds of services, JOpera’s service
meta-model and the corresponding architecture can be extended to describe and
interact with an open set of heterogeneous service access mechanisms.

This paper is structured as follows. In Section 2 we discuss related work
in the context of Web service composition. In Section 3 we introduce JOpera’s
open service meta-model, followed in Section 4 by some examples on how to
apply it to describe three (very) different kinds of services: Web services, Java
snippets and legacy UNIX applications. In Section 5 we describe the relevant
aspects of JOpera’s architecture implementing the service meta-model. To give
an indication of the difference between the cost of invoking coarse-grained Web
services and fine-grained Java snippets we have included an overhead comparison
in Section 6. In Section 7 we draw some conclusions.

2 Related Work

The need for supporting a variety of service access protocols is also recognized
in the Web services community. To this end, the WSDL interface description
standard supports an open-ended set of bindings. Therefore, a Web service,
whose interface must be described using WSDL, does not necessarily need to be
invoked using the relatively slow SOAP protocol if the client understands other
(non standard) protocols which may offer better performance.



Currently, however, alternative protocols are not yet widely supported and
as long as they are not standardized, using them would defeat the main point
of the Web service vision, where everything should be standardized in order to
achieve widespread interoperability [2].

Along these lines, the Web Services Invocation Framework (WSIF [9]) should
be mentioned, as it provides this kind of access transparency. It allows to dy-
namically build clients to Web services described in WSDL, independent of the
actual access mechanisms (e.g., SOAP) involved. As we will discuss in this paper,
our service meta-model goes beyond that since it is not limited to services de-
scribed with WSDL. Instead, it can be also applied to other interface description
languages.

Moreover, in order to bridge the gap between the existing component hetero-
geneity and the uniform Web services standards, wrappers and interface adapters
are still required to make the “legacy” types of components and protocols fit
with the new standards. This approach introduces unnecessary execution over-
head and shifts development and maintenance costs from the infrastructure to
the end user [14]. Thus, we believe it is less expensive to build once a generic
adapter to integrate a certain type of components into JOpera, instead of having
to setup a different Web service wrapper for each of the service of that particular
type that have to be integrated within a composite service.

Recently, to address the limitations of coarse-grained Web service composi-
tion, IBM and BEA systems proposed to extend the BPEL4WS [11] language
with support for including Java snippets [10]. Although the need for such an
extension was well argued, it remains unclear why, as opposed to Java, a .NET
compliant language should not be chosen instead. Thus, a service composition
technology which was originally tied to platform neutral Web services, becomes
tangled into portability issues [20].

This problem originates from the confusion between the description of the
composition and the description of the components. In our approach, we have
chosen to keep a clear separation between the two. Thus, our visual service
composition language [17] doesn’t have to be modified to support new kinds of
services, such as Java snippets, as this extension only affects the service meta-
model.

3 An open Service Meta-Model

Before describing in detail the properties of some of the service types currently
supported by JOpera, we introduce JOpera’s open service meta-model. This way,
we both motivate its flexibility and extensibility and summarize the information
required to model and to access each type of service.

As shown in Figure 1, the interface of a service is defined in terms of a
set of user-defined input and output parameters. This is the only information
which is used in JOpera to define how the services are composed when drawing
the data flow graph linking the parameters of different service interfaces [17].
Thus, a service interface constitutes the minimal unit of composition. As a first



Service
Provider

Service
Interface

Service Type
Interface

Input Data Flow Mapping

Output Data Flow Mapping

Failure
Detection

Service
Client

Control Flow
Mapping

User Input Parameters

User Output Parameters

System Input Parameters

System Output Parameters

Fig. 1. Relationships between the various entities of the JOpera service meta-
model

approximation the mechanisms involved in the invocation of a specific type of
service are kept completely transparent when modeling how to compose different
service interfaces.

However, in order to support the actual invocation of a service, it is necessary
to model additional information describing how to invoke its functionality and
how to structure the data exchanged with it. Such information is abstracted
into a service type. More precisely, when adding a new service type to JOpera’s
model it is necessary to define its interface (in terms of system parameters);
design how to interact with it in terms of control and data flow; and devise a
failure detection strategy.

Furthermore, the same service interface can be associated with multiple ser-
vice types. This way, it becomes possible to choose between alternative service
access mechanisms. On the one hand the service invocation can be dynamically
adapted to the actual system configuration, whereby the most optimal mecha-
nism is chosen depending on the current environment. On the other hand, if the
invocation fails using one mechanism, another path can be attempted to access
an alternative service provider.



Ready

Service has been invoked

A failure has been detectedInvocation has completed

Running

Finished Failed

Fig. 2. Simple model of a service invocation

3.1 System Parameters

First of all, the interface of each service type is defined as a set of input ([i]) and
output ([o]) parameters. These are called system parameters, to distinguish them
from the user parameters, which are associated with the interface of the service.
It is worth noting that user parameters depend on the specific application and
therefore have nothing to do with the system parameters, which instead model
the information required to access a particular type of service.

The input system parameters control the service invocation, as they identify
the service and describe the information required to interact with the corre-
sponding service provider. Their values are set at design time, when registering
a new service with JOpera’s component library.

The output system parameters model the raw results of the invocation as
well as related metadata (e.g., status, performance profiling or debugging infor-
mation). Their values are set after the invocation has completed and can be used
to determine its outcome.

3.2 Control flow

The transfer of control during one service invocation may involve different inter-
action patterns between the client and the service provider.

In the simplest case, the service is invoked synchronously, i.e., the client
blocks until the results of the invocation are available. This case captures typical
procedure-like invocations, e.g., a call to a local method, a remote procedure call,
an HTTP request/response round.

However, other protocols involve the asynchronous (or event-based) inter-
action between client and service provider, based on the exchange of a pair of
messages representing the starting of the invocation and the notification that
it has completed. Following this protocol, the client does not block after send-
ing the request to the service provider, although the invocation only completes
after the client is notified with a response. Depending on the available mecha-
nisms, the client may periodically poll the service provider for a response, or a
notification message is pushed back from the service provider.



More sophisticated interactions with a service provider may involve the abil-
ity to abort, suspend and resume an ongoing invocation [19]. Likewise, it may
be possible to retrieve partial results even before the whole invocation has com-
pleted [18].

In order to ensure the transparency of these different interaction patterns, we
introduce a simple model of a single transfer of control between client and service
provider in Figure 2. Using this model, a control flow mapping can be easily de-
signed for the aforementioned synchronous and asynchronous cases. If necessary,
the Running state can be extended to support other forms of interaction.

3.3 Data flow

From the point of view of transferring control, the interaction with different
service types is not so difficult to model, as this amounts to describing the
invocation of the service and the corresponding notification that the service’s
invocation has completed.

In our experience, a more difficult challenge lies in modeling the data to
be exchanged with the service and in how to map JOpera’s parameter based
representation of its interface to the service’s internal one. For some service
types this can be relatively simple, at least from a syntactical perspective, where
standards (e.g., SOAP) define how to format the input data and how to interpret
the output data. In other cases, e.g., when integrating legacy UNIX applications,
the problem is much more difficult and there is no general solution, i.e., the ad-
hoc development of wrappers may be required.

In order to provide the necessary flexibility to integrate several different ser-
vice types, in JOpera we follow a two step approach to address the problem of
mapping user-level data parameters to the actual structure of the data under-
stood by the service type.

The mapping between user (application) parameters and system (service
type) parameters is specified once, when a new service component is registered
with JOpera. This mapping can be derived automatically, e.g., by reading the
WSDL description of a Web service.

The data flow mappings depicted in Figure 1 can be formally represented
as a composition of two mappings (mi, mo) which are applied to fit the input
and output parameters of a certain service call C to the given interface S. More
precisely, the interface of a service contains a set of user-defined input ([I]) and
output ([O]) parameters:

[O] = S([I])

Furthermore, a set of predefined service types Ct are available. These de-
fine the interface representation of the corresponding access mechanisms and
invocation protocols in terms of input ([i]) and output ([o]) system parameters:

[o] = Ct([i])



In order to bind a service interface to an implementation of a given service
type, it is necessary to provide the corresponding input and output mappings:

[i] = mi([I])

[O] = mo([o])

At runtime, these mappings are composed with the invocation of service of
a given type as follows:

[O] = mo(Ct(mi(I))

Following such mapping, before a service can be invoked at runtime, the
user input parameters are translated to its system input parameters. The main
mechanism to model and perform this mapping (mi) consists of using parameter
placeholders, which identify one user input parameter and are replaced with its
content when the mapping is evaluated. These placeholders follow the simple
convention of including the name of a parameter between % characters [13].

The service is then invoked and the results are placed in the system output
parameters corresponding to its type. The reverse mapping mo from the system
output parameters to the user-defined output parameters is applied. As opposed
to the input mapping, where a relatively large number of user parameters are
assigned to a small number of system parameters, in this case it is more complex
to take the content of a few parameters, e.g., the output of a program or a Web
page, and model how to extract the application dependent information. For data
having a relatively well defined syntax, e.g., XML, it is possible to follow the
convention of encoding parameter names as tags and insert their values between
those tags [21].

In general, ad-hoc wrappers can be plugged into JOpera with the purpose
of scraping the values of the output parameters from the arbitrarily formatted
data produced by the service. Conversely, it is also possible to avoid breaking up
the results of the invocation into output parameters and treat the result (e.g.,
in form of XML documents or other encodings) as a whole.

3.4 Failure detection

Not only do service invocations finish; sometimes they fail. Depending on the
type of service, failure detection may be based on different assumptions. For each
type of service, it is important to devise a well-defined failure detection strategy,
which determines the outcome of a service invocation. In case of failed invoca-
tions, a description of the problem involved can be stored in the corresponding
system output parameters.

Furthermore, depending on the type of failure, different low-level error han-
dling policies may be implemented. For example, the service invocation may be
retried, if this option is supported by the underlying protocol. Thus, only un-
recoverable failures occurring during the interaction with a particular service
provider remain to be handled at the level of the service composition. In this
case, exception handling constructs can be used to specify whether alternative
(or compensating) services should be be invoked instead.



Service Type Input and Output Data Failure

WWW services
Web Service (SOAP) SOAP SOAP SOAP Fault
Web Server (HTTP) CGI/URL HTML HTTP Error

Local services
UNIX Application (UNIX) CmdLine, Stdin Stdout ExitCode,

StdError

Java services
Java Program (JVM) CmdLine, Stdin Stdout ExitCode,

StdError
Java Snippet (JAVA) Local Variables Exception
Java Remote Method (RMI) Method Parameters Exception

Database services
Database Query (SQL) Parameters XML JDBC Error

XML services
X-Path Query (XPATH) XML XML X-Path Pro-

cessor Error
Style Sheet Transfor-
mation

(XSL) Parameters XML XSLT Proces-
sor Error

System services
JOpera Echo (ECHO) XML XML XML Parser

Error
JOpera Process (OPERA) Implicit Parameters and Failures

Cluster/Grid computing services
BioOpera [4] (PEC) CmdLine Stdout ExitCode,

StdError
Grid services [7] (GLOBUS) SOAP SOAP SOAP Fault

Business process modeling services
Workflow task (WF) Text Text User Error

Table 1. Summary of the service types currently supported by JOpera



4 Examples

In this section we show how to apply our service meta-model to abstract the
common features of different kinds of services. These represent three extreme
cases: standard compliant Web services, fine-grained Java scripts and legacy
UNIX applications.

Additionally, the current version of JOpera includes supports for many other
kinds of services, modeling a Java remote method invocation (RMI), a job sub-
mitted to a batch scheduling system of a cluster of computers, an SQL query to
be sent to a database, the asynchronous exchange of messages through a queuing
system, a human activity, and an XSL style sheet transformation to be applied
to some XML data packet [16]. In Table 1 we summarize the main properties of
some of the service types to which we have applied JOpera’s service meta-model.

4.1 Web Services

This first type of services models the latest form of standard compliant Web
services, whose interface and location are described in a WSDL document [22]
and which are remotely accessible through the SOAP protocol [21]. Web ser-
vices offer the benefit of standard-based interoperability between heterogeneous
programming languages and platforms. With this technology, the effort of build-
ing systems composed out of services distributed across the Internet is greatly
reduced, at the price of a relative high runtime overhead due to the nature of
the protocols involved. Thanks to these standards, it is possible to automatically
import the service’s WSDL description into JOpera’s component library and use
it to generate the corresponding service declarations automatically.

System Parameters The invocation Web service is described by the following
system input parameters: WSDL, with the URL used to locate the description of
the service; service, operation, port, with the names of the WSDL elements used
to identify the actual service, operation and port to be invoked; soapin, which
contains the complete envelope of the SOAP request message to be sent when
invoking the service. This includes both the header and the body of the SOAP
request message. The response (or fault) message returned by a Web service is
stored in the soapout system output parameter.

Data flow The values of the user-provided input parameters are inserted in the
SOAP request message using the previously described placeholder mechanism.
In most cases, each input parameter corresponds to a SOAP message block. If
necessary, JOpera escapes the content of the parameters so that it conforms to
the required SOAP/XML encoding. The output parameters are filled by parsing
the SOAP response message.

Failures The invocation of a Web service may fail for several reasons: its WSDL
description may be invalid; no response message from the service has been re-
ceived after a certain timeout has expired; the service has responded with a soap
fault message.



4.2 Java Snippets

This service type models the most efficient way of invoking Java code. By design,
such code (or snippet) is embedded by the compiler into the code generated
for a process. Thus, it can be invoked with minimal overhead. It can be very
beneficial to use this kind of service to perform small computations [10]. Java
snippets can be applied to perform data conversions, transforming the data in
transit between incompatible services. Also, it gives a convenient syntax for the
evaluation of complex conditional expressions. If the same computation would
have to be invoked using a different mechanism (e.g., Web services), the overhead
of the protocols involved would make it impractical to do so.
System Parameters For Java snippets, there is only one system input parameter
(script) which contains the Java code itself. If an error occurs, the exception

system output parameter contains the message of the Java exception.
Data flow There is a one to one correspondence between user defined parameters
and the Java variables that can be implicitly used in the script. JOpera’s compiler
automatically declares Java variables for each input and output parameters.
After the snippet has completed, the values assigned to the Java variables are
copied into the corresponding output parameters.
Failures JOpera detects a failure if a Java exception is raised and it is not caught
during the execution of the script.

4.3 UNIX Applications

Another type of services, quite different from remote Web services, are com-
mands to be executed in a shell of the local operating system. A shell command
is typically used to provide a generic mechanism of invoking entire ”legacy”
applications. As long as these applications do not provide an explicit API, the
command line may be the only viable mechanism to allow JOpera to interact
with such applications and control their execution. In other words, this type of
service is used to access the services provided by essentially any executable pro-
gram, which is started by typing a command line at the prompt of the operating
system shell.
System Parameters As it is reflected by its system parameters (command, stdin,
stdout, stderr), JOpera employs both the command line itself and pipe-based
interprocess communication mechanisms in order to exchange data with the
external program. Furthermore, the retval system output parameter contains
the program exit code.
Data The values of the user input parameters are transferred to the external
program both using its command line and can also be copied onto its stdin system
input parameter. If necessary, the stdout parameter can be parsed by a user-
provided plugin to extract relevant information to be assigned to the user defined
parameter.
Failures JOpera interprets the value of the retval system parameter, which
contains the exit code of the process as it is returned by the operating system,



Runtime
Kernel

Process
Compiler

Service
Compiler

Visual
Composition
Environment

Service
Library
Manager

Process with
Service References

Service
Adapters

Process
Code

Service
Interfaces

Service
Mappings

Java

W
S

D
L

U
N

IX

S
O

A
P

Fig. 3. JOpera plugin based architecture

to distinguish between a successful execution (0) and a failed execution (non-
0). In both cases, it also stores the program’s standard error into the stderr

parameter so that the user can gather useful debugging information.

5 Architecture

In order to support an open and heterogeneous set of service invocation mech-
anisms, JOpera’s architecture uses plugins to extend the system’s behavior at
three different stages: service definition, service compilation and service invoca-
tion.

As shown in Figure 3, the Service Library Manager uses service import plu-
gins to automatically import services described using other meta-models (e.g.,
WSDL). Using the Visual Composition Environment, the developer may browse
through the service library and select the service interfaces to be composed
into processes [17]. During process compilation, all of the data flow mappings,
which are part of the services referenced by a process are compiled into ser-
vice adapters1. By default, the service compiler produces an efficient executable
1 Although it is always possible to merge the code of the process with the service

adapter code at compile-time, this would fix the binding between service interface



Service Type Description

JAVA Java Snippet
UNIX UNIX Application

SOAP/A11 Local Web Service using Axis 1.1 [3].
SOAP/A12 Local Web Service using Axis 1.2α.
SOAP/WS Remote Web Service using Axis 1.1.

Table 2. Service Invocation Mechanisms to be compared

representation of the data flow mappings of a service. However, the service com-
piler can be extended with plug-ins corresponding to a specific type of service.
For example, in case of Java snippets, the Java code entered as part of the
aforementioned script parameter is injected into the resulting service adapter
code, surrounded by the variable declarations corresponding to the user-defined
parameters.

At run-time, the service invocation proceeds as depicted in Figure 1. The
runtime kernel uses the compiled service adapters to perform the input and
output data flow mappings, while the service is invoked through a kernel plugin.
Such plugin uses the mechanisms and protocols specific to a certain service
type (e.g., UNIX, SOAP) to interact with the service provider and perform the
service invocation. Considering the service meta-model presented in Section 3,
these plug-ins define the control flow mapping and the failure detection strategy
for a given type of services and exchange information with the service adapters
through system parameters. The kernel plugins are loaded on-demand, so that
the system can be dynamically extended to deal with new types of services.

When adding support for a new type of service, a kernel plug-in is required.
A compiler plugin is only necessary if the service adapter should perform some
special processing before or after the invocation. A service import plugin can be
added if it is possible to automatically generate JOpera service definitions from
other interface description languages.

6 Overhead

Performance is one of the arguments behind the idea of providing support for
invoking services of different service types. In order to give an indication of the
overhead involved, we compare the time required by JOpera to invoke a remote
Web service across the Internet with the time JOpera takes to perform a local
Java method call, and – quantitatively – determine the cost (or the benefit) of
preferring services of a certain type over another.

and invocation adapter. Thus, in order to support late binding, the code of the
process only contains references to services, which are resolved at the latest possible
time.



S
e
rv

ic
e

T
y

p
e

0.001 0.01 0.1 1 10

SOAP/WS

SOAP/A12

SOAP/A11

UNIX

JAVA

Time (seconds)

Fig. 4. Service Invocation Overhead for different service types

As listed in Table 2, in this performance comparison we use services of various
types and several implementations of the corresponding kernel plugins.

More precisely, in this experiment we compare different access mechanism to
the same “Temperature Conversion Service”. We chose this service due to its
trivial implementation, so that the execution cost is negligible when compared
to the overhead of invoking it. Another reason to choose this service is that
we found a remote implementation on the Internet at [12]. With it, it becomes
possible to present an interesting comparison between the invocation overhead
of local and remote Web services.

As shown in Figure 4, the most important result of this simple experiment is
that the average service invocation overhead varies about three orders of magni-
tude (from about 1 millisecond to 2.31 seconds) depending on the service type.

The invocation of the Java snippet (JAVA) service offers an invocation over-
head of significantly less than 1/100th of a second, as the implementation of the
service is located within the same Java virtual machine where the JOpera kernel
is running.

Invoking the UNIX application requires to spawn a child process through the
local operating system, and this requires more time: about 0.28 seconds.

The average Web service invocation time is 0.42 seconds in case of a Web ser-
vice deployed on the local area network, called using Axis version 1.1 (SOAP/A11).
This time grows to 0.66 seconds using the latest version of Axis 1.2α (SOAP/A12).
In case of the invocation of remote Web service with Axis 1.1 (SOAP/WS), the
delay and jitter of the wide area network need to be discounted. This effect can
be recognized both in the higher (2.31 seconds) average response time and in
the very high standard deviation (0.9 seconds).

As expected, Web services are the most expensive service type in terms of
the overhead involved. Given the current state of flux of the relevant standards
and available implementations, the performance of the service invocation may
be significantly affected by the choice of which libraries are used. Additionally,
the location of the Web service also affects the overhead, as the cost of invoking
the remote Web service shows.



Since this additional cost is due to the distributed nature of the service inter-
action, it should not be blamed on the Web services protocols, which – instead
– are one of the few technologies currently enabling such type of distributed in-
teraction. Nevertheless, such overhead should be paid only when necessary, i.e.,
to invoke remote services, while more efficient mechanisms should (and can) be
used to access local services.

7 Conclusion

The main contribution of this paper lies in the idea that service composition
should be orthogonal with respect to the types of components involved. By in-
troducing a clear separation between the service composition language and the
service meta-model, we are able to isolate the description of how to compose the
services from how to invoke them. This approach is similar to megaprogram-
ming [23], as it gives several conceptual and practical advantages. First of all,
it is not necessary to extend the composition language if a new kind of service
access mechanism has to be included, as this affects only the component model.
Likewise, if it is possible to redefine the access mechanism (e.g., synchronous
vs. asynchronous) to be employed without modifying the corresponding service
interface, such modifications are completely transparent as far as the description
of the composition is concerned. Such flexibility also leads to the possibility of
doing optimizations since it becomes possible to choose the most efficient mech-
anisms and protocols to access both fine-grained and coarse-grained services.
We are currently investigating several policies to autonomously select the opti-
mal mechanism. This is much more difficult to accomplish if the services to be
composed are restricted to only one type.

Finally, we believe that the possibility of choosing (wisely) between the use
of Web Services or other kinds of services can be of great value, as the most
appropriate type of service in terms of performance, security, reliability and
convenience of use can be chosen.

References

1. G. Alonso. Myths around Web services. Bulletin of the IEEE Technical Committee
on Data Engineering, 25(4):3–9, December 2002.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, Archi-
tectures and Applications. Springer, November 2003.

3. Apache Software Foundation. AXIS version 1.1. http://xml.apache.org/axis.
4. W. Bausch, C. Pautasso, R. Schaeppi, and G. Alonso. BioOpera: Cluster-aware

computing. In Proceedings of the 2002 IEEE International Conference on Cluster
Computing (CLUSTER 2002), pages 99–106, Chicago, IL, USA, 2002.

5. BPMI. BPML: Business Process Modeling Language 1.0. Business Process Man-
agement Initiative, Match 2001. http://www.bpmi.org.

6. C. Bussler. Semantic Web services: Reflections on Web Service Mediation and
Composition. In Proceedings of the Fourth International Conference on Web Infor-
mation Systems Engineering (WISE 2003), pages 253–260, Roma, Italy, December
2003.



7. I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration.
Technical report, Service Infrastructure Workgroup, Global Grid Forum, 2002.
http://www.globus.org/research/papers/ogsa.pdf.

8. K. Gottschalk, S. Graham, H. Kreger, and J. Snell. Introduction to Web services
architecture. IBM Systems Journal, 41(2):170–177, 2002.

9. IBM and Apache Foundation. Web Service Invocation Framework (WSIF), 2003.
http://ws.apache.org/wsif/.

10. IBM and BEA Systems. BPELJ: BPEL for Java technology, March 2004. http:

//www-106.ibm.com/developerworks/webservices/library/ws-bpelj/.
11. IBM, Microsoft, and BEA Systems. Business Process Execution Language for Web

services (BPEL4WS) 1.0, August 2002. http://www.ibm.com/developerworks/

library/ws-bpel.
12. C. Jensen. Temperature Conversion Service. http://developerdays.com/

cgi-bin/tempconverter.exe/wsdl/ITempConverter.
13. F. Leymann and D. Roller. Business Process Management With FlowMark. In Pro-

ceedings of the 39th IEEE Computer Society International Conference (CompCon
’94), pages 230–234, February 1994.

14. J. Oberleitner and S. Dustdar. Constructing Web services out of Generic Compo-
nent Compositions. In Proceedings of the International Conference on Web services
(ICWS-Europe 2003), pages 37–48, Erfurt, Germany, 2003.

15. C. Pautasso. JOpera: Process Support for Web services. http://www.iks.ethz.

ch/jopera/download.
16. C. Pautasso. A Flexible System for Visual Service Composition. PhD thesis, Diss.

ETH Nr. 15608, July 2004.
17. C. Pautasso and G. Alonso. Visual Composition of Web Services. In Proceedings of

the 2003 IEEE International Symposium on Human-Centric Computing Languages
and Environments (HCC 2003), pages 92–99, Auckland, New Zealand, 2003.

18. N. Sample, D. Beringer, and G. Wiederhold. A Comprehensive Model for Arbi-
trary Result Extraction. In Proceedings of the 2002 ACM symposium on Applied
computing (SAC 2002), pages 314–321, Madrid, Spain, 2002.

19. H. Schuster, S. Jablonski, P. Heinl, and C. Bussler. A General Framework for
the Execution of Heterogeneous Programs in Workflow Management Systems. In
Proceedings of the 1st IFCIS International Conference on Cooperative Information
Systems (CoopIS’96), pages 104–113, Los Alamitos, CA, 1996. IEEE Computer
Society Press.

20. H. Smith. Enough is enough in the field of BPM: We don’t need BPELJ:
BPML semantics are just fine, April 2004. http://www.bpm3.com/bpelj/

BPELJ-Enough-Is-Enough.pdf.
21. W3C. Simple Object Access Protocol (SOAP) 1.1, 2000. http://www.w3.org/TR/

SOAP.
22. W3C. Web services Definition Language (WSDL) 1.1, 2001. http://www.w3.org/

TR/wsdl.
23. G. Wiederhold, P. Wegner, and S. Ceri. Towards Megaprogramming: A Paradigm

for Component-Based Programming. Communications of the ACM, 35(11):89–99,
1992.


