
BPEL for REST

Cesare Pautasso

Faculty of Informatics, University of Lugano
via Buffi 13, 6900 Lugano, Switzerland
cesare.pautasso@unisi.ch

Abstract. Novel trends in Web services technology challenge the assumptions
made by current standards for process-based service composition. Most RESTful
Web service APIs, which do not rely on the Web service description language
(WSDL), cannot easily be composed using the BPEL language. In this paper we
propose a lightweight BPEL extension to natively support the composition of
RESTful Web services using business processes. We also discuss how to expose
the execution state of a business process so that it can be manipulated through
REST primitives in a controlled way.

1 Introduction

With the goal of attracting a larger user community, more and more service providers
are switching to REST [1] in order to make it easy for clients to consume their Web
service APIs [2–4]. This emerging technology advocates a return to the original de-
sign principles of the World Wide Web [5] to provide for the necessary interoperability
and enable integration between heterogeneous distributed systems. The HTTP standard
protocol thus becomes the basic interaction mechanism to publish existing Web appli-
cations as services by simply replacing HTML payloads with data formatted in “plain
old” XML (POX) [6].

In this context, many of the assumptions made by existing languages for Web ser-
vice composition no longer hold [7]. Since most RESTful Web service APIs do not
use the standard Web service description language (WSDL) to specify their interface
contracts, it is not possible to directly apply existing languages, tools and techniques
that are built upon this standard interface description language. Considering that REST
prescribes the interaction with resources identified by URIs [8], languages that assume
static bindings to a few fixed communication endpoints do not cope well with the dy-
namic and variable set of URIs that make up the interface of a RESTful Web service.
Even the basic message-oriented invocation constructs for sending and receiving data
cannot be consistently applied with the uniform interface principle of a RESTful Web
service. Moreover, in some cases, also the assumption of dealing with XML data [9]
may not apply when accessing resources represented in other, more lightweight, for-
mats such as the JavaScript Object Notation (JSON [10]).

In this paper we argue that process-based composition languages can and should be
applied to compose RESTful Web services in addition to WSDL-based ones. However,
given the differences between the two kinds of services [11, 12], we claim that native
support for composing RESTful Web services is an important requirement for a modern

service composition language. To address this requirement, we show how the Business
Process Execution Language (WS-BPEL [13]) standard can be extended. Also, follow-
ing the recursive nature of software composition (the result of a composition should be
composable [14]), we propose to apply REST principles to the design of the API of a
BPEL engine so that processes themselves (and a view over their execution state) can
be published through a RESTful Web service interface.

The rest of this paper is structured as follows. The motivation for our work is pre-
sented in Section 2. We continue in Section 3 giving some background on RESTful Web
services and outlining the challenges involved in composing this novel kind of services.
In Section 4 we introduce our extensions to the BPEL language with an example loan
application process. The extensions are then specified in Section 5. The relationship be-
tween the resource and the process abstractions is discussed in Section 6. Related work
is outlined in Section 7. We draw our conclusions in Section 8.

2 Motivation

The following quote from the specification of the WS-BPEL 2.0 standard motivated the
research towards the extensions presented in this paper.

The WS-BPEL process model is layered on top of the service model defined
by WSDL 1.1. [. . .] Both the process and its partners are exposed as WSDL
services [13, Section 3].

In other words, the WS-BPEL and the WSDL languages are tightly coupled. The
partner link type construct, introduced in BPEL to tie together pairs of matching WSDL
port types, forces all external interactions of a process to go through a WSDL interface.
Over time, this strong constraint on the original design of the composition language has
produced a set of extensions (e.g., BPEL-SPE [15] for processes invoking other sub-
processes, BPEL4People [16] for interaction with human operators, or – more recently
– BPEL4JOB [17] with job submission and fault handling extensions to better deal
with the requirements of scientific workflow applications, BPEL-DT [18] to compose
data intensive applications, and BPELlight [19] proposing a complete decoupling of
the two languages in the context of message-oriented interactions). Along the same
direction, in this paper we propose another extension to make BPEL natively support
the composition of RESTful Web services.

Without loss of generality, we will ignore the differences between WSDL 1.1 and
the latest WSDL 2.0 version and assume that WS-BPEL will soon be updated to support
the latter. This is important because – as shown in Figure 1 – the new HTTP binding
introduced in WSDL 2.0 can be used to wrap a RESTful Web service and describe
its interface using the WSDL language [20]. Thus, the problem appears to be already
solved: with this binding, a BPEL process could send and receive messages over the
HTTP protocol without necessarily using the SOAP message format.

From a practical standpoint, however, the approach does not lead to a satisfactory
solution for the following reasons. WSDL 2.0 is not yet widely deployed in the field, es-
pecially to describe existing RESTful Web service APIs, and there is very little evidence
indicating that this will change in the future. Thus, at the moment the burden of going

Fig. 1. Funneling RESTful Web services through a WSDL 2.0 interface in order to invoke them
from a BPEL process

through the procedure of recreating a synthetic WSDL description for the RESTful Web
service interface is shifted from the service provider to the BPEL developer [21]. Every
supplementary artifact introduced in a solution makes it more complex and more ex-
pensive to maintain. The additional WSDL description needs to be updated whenever
changes are made to the corresponding RESTful Web service.

From a theoretical point of view, this approach hides the resource-oriented interac-
tion primitives of REST inside the service-oriented abstractions provided by WSDL. As
we are going to discuss, the invocation of a WSDL operation by means of synchronous
or asynchronous message exchange does not always fully match the semantics of a
“GET”, “PUT”, “POST”, or “DELETE” request performed on a resource URI [11, 22–
24]. Thus, we argue that native support for explicitly controlling the interaction based on
REST primitives would be beneficial to developers trying to apply the BPEL language
to specify how to compose resources, as opposed to WSDL-based services (Figure 2).

R
R2

PUT

PUT

DELETE

DELETE

GET

GET

POST

POST

BPEL for REST

...

<Put >

<Get R>

...

<Post R>

<Delete >

...

R

R

2

2

Fig. 2. Direct invocation of RESTful Web services using the BPEL for REST extensions

3 Composing RESTful Web services

The composition of RESTful Web services is typically associated with so-called Web
2.0 Mashups [25, 26], where this emerging technology helps to reduce the complex-
ity and the effort involved in scraping the data out of HTML Web pages [27]. In this
context, a consensus still needs to be reached in terms of how to describe the interface
of such RESTful Web service. As we previously discussed it is not always convenient
to use the HTTP binding of the latest version of the Web service description language
(WSDL 2.0). Whereas the Web application description language (WADL [28]) has been
recently proposed, most APIs still rely on human-oriented documentation. This typi-
cally includes interactive examples that help developers to infer how to use a particular
service. If XML is employed as representation format, an XML Schema description is
often associated with the textual documentation.

This uncertain situation makes it challenging to define a composition language for
REST as it is currently not yet possible to assume that a particular service description
language will be used. Thus, like [19], we choose not rely upon the presence of such
a description language and introduce language constructs for service invocation that
directly map to the underlying interaction mechanisms and patterns [29].

In the rest of this section we give an overview over the design principles followed
by RESTful Web services [1, 6] and discuss how these challenge the BPEL language in
its current form. These principles and challenges have been taken into account during
the design of the corresponding BPEL extensions presented in this paper.

Resource addressing through URI – The interface of a RESTful Web service con-
sists of a set of resources, identified by URIs. From the client perspective, the inter-
action with a RESTful Web service requires to interact with a dynamic and variable
set of URIs, which are not necessarily known nor identifiable in advance. From the
service provider viewpoint, it should be possible to use languages such as BPEL
to manage the lifecycle of arbitrary resources and to implement the state transition
logic of composite resources [30].

Uniform interface – The set of operations available for a given resource is fixed by
design to the same four methods: PUT, GET, POST, and DELETE. These CRUD-
like operations apply to all resources with similar semantics. POST creates a new
resource under the given URI; GET retrieves the representation of the current state
of a resource; PUT updates the state of a resource (and may also initialize the state
of a new resource if none was previously found at the given URI); DELETE frees
the state associated with a resource and invalidates the corresponding URI. Each
of these methods (or verbs) is invoked on a resource using a synchronous HTTP
request-response interaction round. Thus, there is no need for the asynchronous
(one-way) message exchange patterns supported by BPEL/WSDL. Also, since the
set of operations is fixed to the four methods, there is no apparent need to explicit
enumerate them using an interface description language.

Self-descriptive messages – Thanks to meta-data, clients can negotiate with service
providers the actual representation format of a resource. Thus, it is not always pos-
sible to statically assign a fixed data type to the payload of an HTTP response. Also,
since RESTful Web services may not always exchange XML data, BPEL variables

need to accomodate a larger set of possible data representation formats. Addition-
ally, meta-data is used to perform client and server authentication, access control,
compression, and caching. Thus, from within a BPEL process it should be possi-
ble to access and control this meta-data, in a way similar to how SOAP message
headers are configured.

Hypermedia as the engine of application state – Whereas every interaction is kept
stateless using self-contained request and response messages, stateful interactions
are based on the concept of explicit state transfer. Through hyperlinks, valid fu-
ture states of the interaction can be embedded in the representation of a resource
and discovered interactively by clients. From this principle, it follows that resource
URIs may be dynamically generated by a service. Thus, a mechanism for extract-
ing URIs from response messages is needed together with a construct for dynamic
binding of activities to target resource URIs.

4 Example

Before giving a complete specification of the BPEL for REST extensions, in this section
we informally introduce them within the example process illustrated in Figure 3.

The Loan application process exposes one resource, the loan that represents the
state of a loan application. Clients can initiate a new loan application with a PUT re-
quest on this resource and retrieve the current state of their application with GET. A
DELETE request immediately cancels the application if it is still in progress, otherwise
it triggers the execution of a different loan cancellation process. The lifecycle of a loan
application goes through several stages as specified by the sequence of activities trig-
gered by the PUT request. In particular, the process invokes the RESTful Web services
of two different banks to gather available interest rates and payment deadlines. It will
then wait for the client to make a decision choosing between the two competing of-
fers. Once the client has chosen an offer, the BPEL process will confirm the acceptance
with a POST request that is dynamically bound to a URI provided by the bank service
(indicated with $accept in the Figure) together with the offer.

For clarity, in the following we highlight the BPEL for REST extension activities
in boldface. Also, to enhance the readability of the XML code, we have omitted
namespace declarations and taken some liberty with the syntax of the <assign> ac-
tivity (this simplified syntax is not part of the proposed language extension). Variable
interpolation is indicated by prefixing the name of variables with the $ sign.

Client
Loan

Service
(BPEL)

PUT /loan

GET /loan

DELETE /loan

DELETE /loan/choice

GET /rate

POST $accept

GET /loan/choice

POST /loan/choice

Bank
Services

Fig. 3. Loan Application Process Example

<process name="LoanApplication">
<resource uri="loan">
<!-- State variables of the resource -->
<variable name="name"/>
<variable name="amount"/>
<variable name="rate"/>
<variable name="bank"/>
<variable name="start_date"/>
<variable name="end_date"/>

These variable declarations store the state of the loan resource declared within
the LoanApplication BPEL process. Associated with the resource, the process
specifies three request handlers: onPut, onGet, onDelete.

<!-- PUT /loan request handler -->
<onPut>
<if><condition>$request.amount > 100000</condition>
<then>
<response code="400">
Requested amount too large

</response>
<exit/>

</then>
<else>
<sequence>
<assign>

name = $request.name;
amount = $request.amount;

start_date = $request.start_date;
</assign>
<response code="201">
Processing loan application

</response>

The PUT request is used to initialize the state of the loan resource. However, if the
requested loan amount is too large, the client will be informed with a response car-
rying the HTTP code 400 (Bad Request) and the resource will be immediately deleted
using the BPEL <exit> activity. Otherwise the state of the resource is initialized from
the BPEL for REST predefined variable called $request which stores the input pay-
load of the HTTP PUT request. After informing the client that the resource could be
created (HTTP response code 201), the onPut request handler continues with the next
step of the loan application process, when two different RESTful Web services are in-
voked to retrieve the available interest rates for the given loan request.

<!-- Get rates from two different bank services -->
<scope>
<variable name="ubs_response"/>
<variable name="cs_response"/>
<variable name="url_accept"/>
<variable name="accept_response"/>
<flow>
<get uri="http://www.ubs.ch/rate?chf=$amount&from=$start_date"

response="ubs_response">
<get uri="http://www.cs.ch/rates?amount=$amount&start=$start_date"

response="cs_response">
</flow>

The two services are invoked in parallel using the BPEL <flow> activity. They are
invoked using a GET request on a URI that is constructed using the current state of the
loan resource. The response of the services are stored in the corresponding variables,
if the invocation is successful.

At this point, the client should decide which loan rate is preferred. To do so, the
process dynamically creates a new resource at the URI loan/choice. A GET on this
new resource will retrieve the current offers (represented in JSON) while a DELETE
request can be used to reject both offers and cancel the entire loan application process.

<!-- Let client choose the preferred bank -->
<while>
<condition>TRUE</condition>
<resource uri="choice">
<onGet>

<!-- Return the rates offered by the banks -->
<response code="200">
<header name="Content-Type">application/json</header>

[{ bank:"cs",
rate:"$cs_response.rate",
end_date:"$cs_response.until" },

{ bank:"ubs",
rate:"$ubs_response.rate",
end_date:"$ubs_response.end" }]

</response>
</onGet>
<onDelete>

<!-- Reject the offer and cancel the loan application -->
<sequence>
<response code="200"/>
<exit/>

</sequence>
</onDelete>
<onPost>

<!-- Store the client choice and continue -->
<sequence>
<assign>bank = $request.choice;</assign>
<if><condition>bank == "cs"</condition>
<then><assign>rate = $cs_response.rate;

end_date = $cs_response.until;
url_accept = $cs_response.accept</assign></then>

<else><assign>rate = $ubs_response.rate;
end_date = $ubs_response.end;
url_accept = $ubs_response.accept</assign></else>

</if>
<response code="200"/>
<activeBPEL:break/>

</sequence>
</onPost>
</resource>

</while>

To continue the execution of the process, the client must communicate its choice us-
ing a POST request. The process will update the state of the loan resource with the
client decision and the corresponding information from the chosen offer: the rate and
end date of the loan and the URL to use in order to confirm the acceptance of the
offer with the bank.

A successful (code 200) response is then returned to the client and the execution
continues by exiting the <while> loop1. Once the execution exits the scope of the
resource choice declaration, such resource is no longer available to clients. Further
requests to its URI will result in a 404 (Not Found) code being returned by the BPEL
for REST engine. To conclude the onPut request handler, the chosen bank service is
informed by sending the client’s name with a POST request dynamically bound to the
acceptance URL that was returned with the terms of the offer.

<!-- Accept the loan offered by the chosen bank -->
<post uri="$url_accept" request="$name" response="accept_response">

</scope>
</sequence>
</else>
</if>

</onPut>

It is important to point out that once the execution of the <onPut> request handler
is completed, the state of the newly created loan resource is not discarded, but it will
remain available to clients until the corresponding DELETE request is issued. As illus-
trated in the final part of the example, clients can retrieve such state at any time using
a GET request. To cancel the loan application, clients may issue a DELETE request.
However, depending on the state of the loan resource, canceling it may not always be
possible and may require to execute the corresponding loan cancellation business pro-
cess.

<!-- GET /loan request handler -->
<onGet>
<!-- Return the state of the loan application -->
</onGet>

<!-- DELETE /loan request handler -->
<onDelete>
<if> <condition>bank == null</condition>
<then>
<response code="200"/>
<exit/>

</then>
<else>

<!-- Start the loan cancellation process -->
<invoke...>

</else>
</if>

</onDelete>
</resource>
</process>

1 For simplicity, the process calls the <break> activity (a non-standard BPEL extension intro-
duced by the ActiveBPEL engine). However it would also be possible to do so by setting the
appropriate flag to be tested in the loop condition.

5 BPEL for REST extensions

As shown in the previous example, in this paper we propose two kinds of extensions.
First, it should be possible to invoke a RESTful Web service directly from a BPEL
process. Also, we propose a declarative construct to expose parts of the execution state
of a BPEL process as a resource. To do so, we choose the introduce a set of activities,
constructs and handlers that are directly related to the REST uniform interface principle.

5.1 Invoking RESTful Web services

To invoke a RESTful Web service using the HTTP (or HTTPS) protocol from a BPEL
process, we add these four activities: <get>, <post>, <put>, <delete>.

As shown in Figure 4, the four activities use the uri attribute to specify the target
resource address. The URI can be a constant value, but also be computed out of data
currently stored in the process variables. Thus, BPEL for REST supports dynamic bind-
ing to invoke resource URIs that are only known at runtime. The only constraint on the
structure of the URI is that it should target a resource accessible using the HTTP or the
HTTPS protocols.

Following the convention of the existing BPEL <invoke> activity, the data for the
request and response payloads is stored in variables that are referenced from the cor-
responding request and response attributes. In case of <get> and <delete>
activities, there is no request payload as these REST primitives operate on the resource
URI only. For <put> and <delete> the response attribute is optional, as some ser-
vices may return an empty payload with these two methods.

The headers sent with the HTTP request can be controlled using the <header>
child elements of each of the four invocation activities. Also in this case, their values can
be set to constant values but also computed from information stored in BPEL variables.

Similar to standard BPEL <invoke> activities, <get>, <post>, <put>, and
<delete> are equipped to deal with invocation failures. In particular, if an HTTP
code indicating an error (i.e., 4xx or 5xx) is detected, the activity will fail and raise the
corresponding BPEL fault that can be caught by a standard fault handler. As shown
in Figure 4, fault handlers in BPEL for REST can be associated with specific HTTP
status codes. Unless a specific fault handler is specified, all other HTTP codes (e.g.,
like 3xx used to indicate a redirection) will be transparently managed by the BPEL
engine.

<get uri="" response="">
<header name="">*value</header>
<catch code="" faultName=""?>*...</catch>
<catchAll>?...</catchAll>

</get>
<post uri="" request="" response=""> ... </post>
<put uri="" request="" response=""?> ... </put>
<delete uri="" response=""?> ... </delete>

Fig. 4. BPEL for REST extensions to invoke a RESTful Web service

<resource uri="">
<variable>*
<onGet>? ... </onGet>
<onPut>? ... </onPut>
<onDelete>? ... </onDelete>
<onPost isolated="false"?>? ... </onPost>
</resource>

<response code=""?>
<header name="">*value</header>
payload

</response>

Fig. 5. BPEL for REST extensions to declare resources within a process

5.2 Publishing processes as RESTful Web services

To declaratively publish certain sections of a BPEL process as a resource we introduce
the <resource> container element (Figure 5). This construct allows to dynamically
publish resources to clients depending on whether their declarations are reached by the
execution of the BPEL process. Once a process reaches the <resource> element,
the corresponding URI is published and clients may start issuing requests to it. Once
execution leaves the scope where the <resource> is declared, its URI is no longer
visible to clients that instead receive an HTTP code 404 (Not found). Resources that
are declared as top-most elements in a BPEL process never go out of scope and they
are immediately published once the BPEL process is deployed for execution. As shown
in the example, resource declarations can be nested. The URI of nested resources is
computed by concatenating their uri attribute with the usual path (/) separator.

Similar to the BPEL <scope>, a <resource>may contain a set of <variable>
declarations that make up the state of the resource found at a given uri. These state
variables are only visible from within the resource declaration.

Like the BPEL <pick>, the <resource> contains a set of handlers that are
triggered when the process receives the corresponding HTTP request. As opposed to
<pick>, which contains one or more onMessage/onAlarm handlers, the request
handlers found within a <resource> directly stem from the REST uniform interface
principle. They are: <onGet>, <onPost>, <onPut>, <onDelete>. If a request
handler for a given verb is not declared, requests to the resource using such verb will
be answered by the BPEL engine with HTTP code 405 (Method not allowed). At least
one request handler must be included in a resource declaration and a handler for a given
request may appear at most once.

Another difference with <pick> is that there is no limit on the number of times
one such handler may be concurrently activated during the lifetime of the resource it is
attached to. If multiple clients of a BPEL process issue in parallel a GET request on a
resource declared from within the process, the execution of the corresponding onGet
request handler will not be serialized. Since only POST requests are not meant to be

idempotent, the <onPost> handler may be flagged to guarantee proper isolation2 with
respect to the access of the resource state variables. To ensure that GET requests on a
resource are indeed safe, the onGet request handler only has read-only access to the
state variables of the corresponding resource.

The behavior of a request handler can be specified using the normal BPEL struc-
tured activities (i.e., <sequence>, <flow>, etc.). However, control-flow links
across different handlers are not supported.

To access the data sent by clients with the request payload, a pre-defined variable
called $request is available from within the scope of the request handler. Likewise,
a variable called $request headers gives read-only access to the HTTP request
headers.

Results can be sent back to clients using the BPEL for REST <response> ac-
tivity. Its code attribute is used to control the HTTP response status code that is sent
to clients to indicate the success or the failure of the request handler. The response
headers can be set using the same header construct introduced for the invocation of
a RESTful Web service. The payload of the response is embedded within the body of
the element, but could also be precomputed in a variable (i.e., by inlining a reference to
the $variable in the body of the element). Whereas at least one response element
should be found within a request handler, in more complex scenarios it could be useful
to include more than one (e.g., to stream back to clients over the same HTTP connec-
tion multiple data items as they are computed by the BPEL process). In this case, only
the first response element should specify the HTTP code and the headers of the re-
sponse. The connection with the client will be closed after the last response element
is executed. As shown in the onPut request handler of the example, a response does
not need to be placed at the end of the request handler, as the handler execution may
continue even after the response has been sent to the client.

5.3 Minor BPEL extensions and changes

In this section we discuss a few minor extensions and small changes to the semantics of
existing BPEL activities to round off the support for REST in the language.

As shown in the example, the BPEL <exit/> activity – in addition to completing
the execution of the process – has the additional effect of discarding the state of all
resources that were associated with the process. Since nested resources are implicitly
discarded as execution moves out of their declaration scope, exit has only an effect
on the state of the top-level resources, which would remain accessible to clients even
after the normal execution of the process has completed.

Given the absence of a static interface description for RESTful Web services, and
the lack of strong typing constraints on the data to be exchanged, BPEL for REST
is a dynamically typed language. Thus, static typing of <variable> declarations be-
comes optional [13, SA025]. In particular, the attribute messageType – being directly
dependent on WSDL – is not used, while the type or element attributes may still be
used in the presence of an XML schema description for the RESTful Web service.

2 Similar to the BPEL isolated scope [13, Section 12.8]

6 Discussion

In BPEL for REST, the concept of business process is augmented with notion of re-
source. We have introduced the resource declarative construct to specify that at a
certain point of the execution of a process, parts of its state can be published to clients
using a RESTful Web service interface. Thus, it is important to understand what is
the relationship between the state of a BPEL process instance and the state of such
resources.

The lifecycle of typical BPEL process instances begins with the execution of a so-
called start activity, which may be either an instantiating receive or a pick configured
with a createInstance="Yes" attribute. Once a process has been instantiated,
its state consists of the values assigned to its variables together with an “instruction
pointer” indicating which subset of its activities are currently active. During execution,
all messages exchanged are correlated with a particular process instance based on their
content and on the correlation sets declared in the process. Execution of a process in-
stance proceeds until it reaches an exit activity or the process simply runs out of
activities that can be executed. The state of a process instance is typically discarded
once execution has completed.

The lifecycle of resources should follow the REST uniform interface principle. Re-
sources are created (or initialized) with a POST/PUT request. Once a resource has been
created, clients may read its current state using GET requests, update its state using
PUT requests, and discard its state using DELETE requests.

In BPEL for REST, the state of a resource is accessed and manipulated from within
the resource request handlers. A new resource instance is created by initializing the
resource state variables from within the <onPut> or <onPost> request handler. To
let clients identify a specific resource instance, in the simplest case, an HTTP Cookie
can be automatically generated by the BPEL engine handling PUT requests. The en-
gine may intercept responses carrying the HTTP status code 201 (Created) and add the
cookie with a unique identifier. Clients will send the cookie for all future interactions
(e.g., GET, PUT, and DELETE) with the resource URI and the engine will use the
cookie to correlate the requests with the correct state of the resource instance.

As proposed in [31, 30], a cookie-free solution based on URI rewriting that involves
the template-based generation of resource identifiers is also possible. This would work
as follows: given a top-level URI resource (e.g., /loan) corresponding to a process
model, if a POST request is answered with a 201 (Created) status code, the engine
detects this and adds a Location: /loan/i redirection header (where i is a unique
identifier of the newly created instance). Further GET, PUT, and DELETE requests
from clients will have to be directed to the specific resource instance URI /loan/i.
Nested resource URIs are still constructed by concatenating their uri attributes, but
should now also include the resource instance identifier. A GET request to the original
resource URI /loan could be then used to return hyperlink references to all active
process instances managed by the engine.

BPEL for REST distinguishes between two aspects of a resource that can be pub-
lished from a process: its URI and its state stored in the variables declared within the
resource. If a resource is declared as a top-level element of a BPEL process, clients can
interact with its URI as soon as the BPEL code is deployed for execution, no matter

whether a process instance has yet been started. If a resource is declared from within a
local scope of the process, its URI is published only once the execution of a particular
process instance reaches the particular scope. By introducing this distinction between
top-level and local resource declarations, BPEL for REST supports a pure resource-
oriented style of composition, where the result of a BPEL process is a resource that is
accessed through the REST uniform interface and can be instantiated multiple times.
Nevertheless, BPEL processes can also be instantiated using standard compliant start
activities and publish resources during their execution that expose part of their state to
clients also using the REST uniform interface.

All in all, the goal of the BPEL for REST extensions is to follow a declarative
approach to embedding resources within processes so that developers do not have to
worry about correlating requests with resource instances, a feature that should be han-
dled transparently by the engine.

7 Related Work

BPEL for REST builds upon several existing research contributions within the area
of Web service composition languages [32, 33]. Also, from the practical side, ad-hoc
support for invoking RESTful Web services is currently being discussed for some BPEL
engines.

In [30], BPEL is proposed as a suitable language to model the internal state of
the resources published by RESTful Web services. To do so, BPEL scopes are used to
represent different states of a resource and POST requests trigger the transition between
different scopes/states. GET, PUT, and DELETE are mapped to <onMessage> event
handlers that access, update and clear the values of the BPEL variables declared within
the currently active scope. The XPath language embedded in BPEL assign activities
is extended with functions to compute URI addresses. Unlike the extensions presented
in this paper, the resulting “resource-oriented” BPEL does not support the invocation
and the composition of external RESTful Web services, but only the publishing of a
BPEL process as a resource (or, more exactly, the implementation of a resource state
transition logic using BPEL).

BPELlight [19] is an attempt to remove the tight coupling between BPEL and
WSDL by identifying the BPEL activities that are closely dependent on WSDL abstrac-
tions and subsuming them with a generic messaging construct (the <interaction-

Activity>). We take a similar, but less generic, approach, that introduces a specific
set of resource-oriented activities to provide native and direct support for the interaction
with RESTful Web services.

The idea of a RESTful engine API to access the execution state of workflow in-
stances has been described in [34]. In this paper we provide explicit language support
to control which parts of a process becomes exposed through a similar kind of API.

Bite [31] (or the IBM Project Zero assembly flow language) can be seen as a BPEL
with a reduced set of activities specifically targeting the development of composite Web
application workflows. As in BPEL for REST, the language supports the invocation of
RESTful Web services and the corresponding runtime allows to automatically publish
processes as resources. Unlike BPEL for REST, the Bite language does not give a di-

rect representation of the REST interaction primitives, as those are condensed within a
single <invoke> activity, which – as opposed to the one from BPEL – can be directly
applied to a URI. Also, with Bite it is not possible to dynamically declare resources
from within a process, so that clients may access their state under different representa-
tions in compliance with the REST uniform interface principle (e.g., the PUT verb is
not supported). Still, the <receive-reply> activity in Bite can seen as a form of the
combination <resource><onPost> in BPEL for REST, since it makes processes
wait for client POST requests on a particular URI.

Within the Apache Orchestration Director Engine (ODE) project, a wiki-based dis-
cussion regarding RESTful BPEL extension has been recently started3. The proposed
extension overrides the semantics of existing BPEL activities (i.e., <invoke>) to han-
dle the invocation of RESTful Web services. Non-standard attributes are introduced to
store the required metadata and bindings to URIs. The ability of declaring and instan-
tiating resources is provided through extensions of the <onEvent> and <receive>
activities. It is worth noting that this solution does not follow the one based on the
WSDL 2.0 HTTP binding presented in Section 2. In this paper we proposed a different
approach that clearly separates the RESTful activities from the standard ones used to
interact with WSDL-based services.

8 Conclusion

This paper contributes to the ongoing discussion on how to best capture the notion of
stateful resource in Web service composition languages originally based on the con-
cepts of business processes and of message-based service invocation. It focuses on the
research problems that stem from the interaction between two current emerging tech-
nologies: WS-BPEL and RESTful Web services. Given their lack of formally described
interfaces and the possibility of not always using XML messages, RESTful Web ser-
vices are challenging to compose through the WSDL-based invocation abstractions re-
quired by WS-BPEL. The paper presents in detail using the classical “loan application”
example a new extension to the BPEL standard with the goal of providing native support
for the composition of RESTful Web services. The extension turns the notion of “re-
source” and the basic RESTful interaction primitives (GET, POST, PUT, and DELETE)
into first class language constructs. With these, a BPEL process can directly interact
and manipulate the state of external resources and declaratively publish parts of its state
through a RESTful Web service API.

Acknowledgements

This work is partially supported by the EU-IST-FP7-215605 (RESERVOIR) project.
The author would also like to thank Domenico Bianculli and the anonymous reviewers
for their insightful comments.

3 Linked from http://ode.apache.org/bpel-extensions.html, last checked on
June 13th, 2008.

References

1. Fielding, R.: Architectural Styles and The Design of Network-based Software Architectures.
PhD thesis, University of California, Irvine (2000)

2. Vinoski, S.: Serendipitous reuse. IEEE Internet Computing 12(1) (2008) 84–87
3. O’Reilly, T.: REST vs. SOAP at Amazon. (April 2003) http://www.oreillynet.

com/pub/wlg/3005.
4. Programmable Web: API Dashboard. (2007) http://www.programmableweb.com/

apis.
5. Fielding, R.: A little REST and Relaxation. The International Conference on Java Tech-

nology (JAZOON07), Zurich, Switzerland. (June 2007) http://www.parleys.com/
display/PARLEYS/A\%20little\%20REST\%20and\%20Relaxation.

6. Richardson, L., Ruby, S.: RESTful Web Services. O’Reilly (May 2007)
7. Laskey, K., Hgaret, P.L., Newcomer, E., eds.: Workshop on Web of Services

for Enterprise Computing, W3C (February 2007) http://www.w3.org/2007/01/
wos-ec-program.html.

8. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): generic
syntax. IETF RFC 3986. (January 2005)

9. Florescu, D., Gruenhagen, A., Kossmann, D.: XL: An XML programming language for Web
service specification and composition. In: Proc. of the 11th International World Wide Web
Conference (WWW2002), Honululu, Hawaii, USA (May 2002)

10. Crockford, D.: JSON: The fat-free alternative to XML. In: Proc. of XML 2006, Boston,
USA (December 2006) http://www.json.org/fatfree.html.

11. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful Web Services vs. Big Web Services:
Making the right architectural decision. In: Proc. of the 17th World Wide Web Conference,
Beijing, China (April 2008)

12. Haas, H.: Reconciling Web services and REST services. In: Proc. of ECOWS 2005, Växjö,
Sweden (November 2005) Keynote Address

13. OASIS: Web Services Business Process Execution Language (WSBPEL) 2.0. (2006)
14. Assmann, U.: Invasive Software Composition. Springer (2003)
15. IBM, SAP: WS-BPEL Extension for Sub-Processes. (October 2005)
16. Active Endpoints, IBM, Oracle, SAP: WS-BPEL Extension for People. (August 2005)
17. Tan, W., Fong, L., Bobroff, N.: BPEL4JOB: A fault-handling design for job flow manage-

ment. In: Proc. of the 5th International Conference on Service-Oriented Computing (ICSOC
2007), Vienna, Austria (2007)

18. Habich, D., Richly, S., Preissler, S., Grasselt, M., Lehner, W., Maier, A.: BPEL-DT - data-
aware extension of BPEL to support data-intensive service applications. In: Emerging Web
Services Technology, Vol. II, Birkhäuser (September 2008)

19. Nitzsche, J., van Lessen, T., Karastoyanova, D., Leymann, F.: BPELlight. In: Proc. of the 5th
International Conference on Business Process Management (BPM 2007). (September 2007)

20. Chinthaka, E.: REST and Web services in WSDL 2.0. (May 2007) http://www.ibm.
com/developerworks/webservices/library/ws-rest1/.

21. Pasley, J.: Using Yahoo’s REST services with BPEL. Cape Clear. (2008) http://
developer.capeclear.com/video/httpwizard/httpwizard.html.

22. Snell, J.: Resource-oriented vs. activity-oriented Web services. IBM developerWorks.
(October 2004) http://www-128.ibm.com/developerworks/webservices/
library/ws-restvsoap/.

23. Vinoski, S.: Putting the ”Web” into Web services: Interaction models, part 1: Current prac-
tice. IEEE Internet Computing 6(3) (May-June 2002) 89–91

24. Vinoski, S.: Putting the ”Web” into Web services: Interaction models, part 2. IEEE Internet
Computing 6(4) (July 2002) 90–92

25. Wikipedia: Mashup (web application hybrid). http://en.wikipedia.org/wiki/
Mashup_(web_application_hybrid)

26. Maximilien, M., Nielsen, D., Tai, S., eds.: 1st International Workshop on Web APIs and
Services Mashups. (September 2007)

27. Schrenk, M.: Webbots, Spiders, and Screen Scrapers. No Starch Press (2007)
28. Hadley, M.J.: Web Application Description Language (WADL). (2006) http://wadl.

dev.java.net/.
29. Barros, A., Dumas, M., ter Hofstede, A.H.: Service interaction patterns. In: Proc. of the 3rd

International Conference on Business Process Management. Volume 3694 of LNCS., Nancy,
France, Springer (2005)

30. Overdick, H.: Towards resource-oriented BPEL. In: 2nd ECOWS Workshop on Emerging
Web Services Technology. (November 2007)

31. Curbera, F., Duftler, M., Khalaf, R., Lovell, D.: Bite: Workflow composition for the web. In:
Proc. of the 5th International Conference on Service-Oriented Computing (ICSOC 2007),
Vienna, Austria (2007)

32. Dustdar, S., Schreiner, W.: A survey on web services composition. International Journal of
Web and Grid Services (IJWGS) 1(1) (2005) 1–30

33. Pautasso, C., Alonso, G.: From Web Service Composition to Megaprogramming. In: Proc.
of the 5th VLDB Workshop on Technologies for E-Services (TES-04), Toronto, Canada
(August 2004) 39–53

34. zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services choreography
standards - the case of REST vs. SOAP. Decision Support Systems 40(1) (July 2005) 9–29

