Publishing Persistent Grid Computations as WS Resources

Thomas Heinis, Cesare Pautasso, Oliver Deak, Gustavo Alonso
{heinist, pautasso, alonso}@inf.ethz.ch odeak@student.ethz.ch
Department of Computer Science, ETH Zurich
Motivation

- Grid computations/workflows can be modeled as processes
- Composed processes can be published as Grid services
- Provides processes with a well-understood and standardized interface
- Eases reusability and integration (Grid clients and portals)
- To do so, we map a process to a Grid service (compliant with WS-RF and WS-N)
Interface Types

- Lifecycle Management
 - Start / suspend / resume / stop processes, discard accumulated state

- Monitoring and Steering
 - Monitoring of the process execution using polling and subscribe – notify interaction patterns
 - Steering of the process execution by suspension and change of the execution state

- Managing process batches
Mapping Processes to Grid Services

- **WS-Resource specification:**
 - defines the implied resource pattern

 We consider a process to be a resource

```
Client <-> WS-Resource <-> Resource
```

```
Client <-> WS-Resource <-> Process
```
Lifecycle Management

- WS-Lifetime defines resources to have a lifetime, and defines operations to end it immediately or scheduled
- Mapping implies a process instance to have a lifetime
- No operation specified to create a resource / start a process
- We additionally defined operations to start (create resources), suspend and resume processes:
 - startProcess, suspend, resume, startSuspended
Monitoring & Steering

- WS-Properties defines resources to have properties which can be read and written
- All elements of the process execution state are considered to be properties
- Allows for synchronous interaction pattern to read and write elements of the state
- Breakpoints are used to suspend the execution
Monitoring & Steering

- WS-Topics defines resources to provide topics to which clients can subscribe
- WS-Notification defines operations to subscribe to topics
- All elements of the process execution state are topics
- We additionally define an operation to subscribe to a topic before starting the execution called startSubscribed
Batch Process Management

- WS-ServiceGroup defines a mechanism to classify resources
- Eases discovery and management of resources
- Process instances belonging to the same batch are grouped using service groups
- We additionally define an operation to start a batch process called startBatch
Design

- Generic approach applicable to many different process execution engines
- We have implemented the mapping in JOpera in order to show feasibility
- JOpera is a workflow management system providing design, runtime (execution & monitoring) tools for large scale processes
Design

- Design tools let the developer design workflows out of heterogeneous components like Web services, Grid services, Condor, SSH, UNIX programs and many more.
- Execution tools allow execution of the workflows in a distributed, autonomic (self-configuring) environment.
- Monitoring tools allow the tracking of the execution.
- We used Pubscribe and Apollo (code basis WS-Core) as implementation of WS-RF and WS-N.
Architecture
Evaluation

- Querying properties
 - Response time when querying a property for an increasing number of resources

- Resource creation & subscription
 - Response time and throughput for different methods of creating a resource

- Starting process batches
 - Resource creation time for creating each process individually as opposed to start these as a batch
Querying Properties

![Graph showing property access time vs. number of resources and process instances]

- Property Access Time (ms)
- Number of Resources
- Number of Process Instances
Resource Creation & Subscription

![Graph showing resource creation and subscription behaviors over the number of clients.](image-url)
Starting Process Batches

![Graph showing the relationship between the number of resources and total resource creation time for startProcess and startBatch.]
Conclusions

- With our mapping, we have bridged the gap between processes and resources
- Processes are published as Grid service (WS-RF and WS-N compliant)
- This allows the reuse of Grid service compositions
- Our evaluation shows that the overhead of the mapping layer is minimal and that the system scales to a large number of resources
Publishing Persistent Grid Computations as WS Resources

Thomas Heinis, Cesare Pautasso, Oliver Deak, Gustavo Alonso

{heinist, pautasso, alonso}@inf.ethz.ch
odeak@student.ethz.ch

ETH Zurich

available at www.jopera.org