
Automatic Configuration of an Autonomic Controller:
An Experimental Study with Zero-Configuration Policies

Thomas Heinis1, Cesare Pautasso2

1Systems Group, Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
2Faculty of Informatics, University of Lugano, 6900 Lugano, Switzerland

heinist@inf.ethz.ch, cesare.pautasso@unisi.ch

Abstract

Autonomic control managers can remove the need for
manual system configuration in order to achieve good per-
formance and efficient resource utilization. However, sim-
ple controllers based on reconfiguration actions tied to
thresholds, or ’if-then’ rules, themselves need to be con-
figured and tuned in order to adapt the controller behavior
to the expected workload characteristic. In this paper we
present an experimental study of zero-configuration policies
that can be automatically tuned based on analytical models
of the system under control. In particular, we have designed
and implemented a threshold-free self-configuration policy
for a distributed workflow execution engine and compared
it with a standard PID controller. The experimental results
included in the paper show that using such a policy the con-
troller can tune itself in addition to reconfiguring the dis-
tributed engine and the proposed policy out-performs sim-
pler policies that require manual and error-prone tuning of
their parameters.

1. Introduction

Automatic self-configuration is one of the most impor-
tant properties of autonomic systems [9]. In order to remove
the need for manual configuration, an autonomic controller
is usually attached to a system to monitor its operation and
automatically apply reconfiguration actions [14]. However,
this is only a partial solution to the self-configuration prob-
lem if the autonomic controller itself requires to be prop-
erly configured and tuned. If it is difficult to set the optimal
configuration of a system, but at least human system ad-
ministrators have gained some experience dealing with it,
optimally configuring an autonomic controller is an even
harder problem [3]. As an example, in our experience with
the JOpera autonomic workflow engine [6], we observed
a 287% performance variation depending on the values of

thresholds used by the autonomic controller policies, which
is similar to the performance variation of a misconfigured
engine.

In this paper we argue that autonomic controllers that
require to be configured – with parameters, thresholds,
or ’if-then’ rules – defeat the goal of automatic self-
configuration and do not really help system administrators
to deal with the complexity of managing their systems [10].
Instead, they potentially make it even more complex to
manage a system, due to the need of understanding the im-
pact of the controller configuration parameters on the over-
all system performance.

As a first step to address this problem, we looked at stan-
dardized controllers (such as the PID controller [7]), for
which specific tuning techniques are available to deal with
the configuration of the controller. However, if the char-
acteristics of the system or the workload change, the PID
controller may need to be tuned again. In this paper, we
compare this standard approach with a zero-configuration
controller and show how it can be built starting from an an-
alytical model of the system under control. Our approach is
applicable to stage-based architectures [17], where a vari-
able number of processing stages are loosely connected by
queues. The controller employs a balancing configuration
policy, which strives to balance the rate of message produc-
tion and consumption by determining the optimal number of
stage replicas around a certain queue. This policy does not
depend on any threshold and it can be automatically tuned
based on observable parameters of the system. In order to
give an experimental comparison of the two approaches, we
have implemented both kinds of controllers for the JOpera
autonomic workflow engine [6]. We then conducted an ex-
tensive evaluation study using real workloads. In this pa-
per we present our first results showing the feasibility and
benefits of zero-configuration control policies in a practical
setting.

The remainder of this paper is structured as follows. In
Section 2 we first motivate our work and provide the con-
text for it in Section 3. We then describe the implementa-

1

tion of a PID Controller policy in Section 4 as baseline and
then present our zero-configuration policy in Section 5. In
Section 6 we compare the different policies, present related
work in Section 7 and draw conclusions in Section 8.

2. Motivation

We begin with an experiment to show the significant im-
pact that the configuration of an autonomic controller may
have on the performance of an autonomic system. In par-
ticular, we have assigned different values to two thresh-
olds used by the best-known policy of the controller of the
JOpera autonomic workflow engine [6]. This Growth pol-
icy monitors the sizes of two different queues and uses these
as an indication of how much work needs to be processed
by each component of the engine. If the growth in either of
the queues exceeds predefined thresholds, then the system
will be reconfigured in order to devote more resources to
the component consuming the growing queue.

As Figure 1 clearly illustrates1, the time required to ex-
ecute the same workload is highly sensitive to the thresh-
old settings of the autonomic control policies. If thresholds
are not set optimally, the performance of the system will
suffer (by 287% in the worst case). Also, the relationship
between the performance and the thresholds is non-linear,
making it difficult to find the optimal threshold values. Set-
ting higher thresholds makes the autonomic system slower
to adapt and thus also slower to execute its workload, as
it will take longer to reach the appropriate configuration.
Reducing the threshold values makes the system change
its configuration more often. If the thresholds become too
small, the reconfiguration overhead also noticeably affects
the system’s performance.

This problem can be approached in different ways: Ei-
ther an automatic way of setting such thresholds is found or
a policy that does not require thresholds is developed.

3. Autonomic Workflow Execution

To put our study in context, in this section we outline
the architecture of the JOpera autonomic workflow engine.
For more information, we refer the interested reader to [6,
15, 16]. We have chosen JOpera for this experimental study
because it offers an extensible research platform where new
control policies can be easily plugged into the controller and
their performance can be compared and benchmarked using
real workloads.

1For the experimental setup and the workload used, please refer to Sec-
tion 6.1 and 6.2 respectively.

0

500

1000

1500

2000

2500

3000

2/1 4/2 10/5 20/10 30/15

E
x
e
c
u
ti
o
n

T
im

e
[s

]

Threshold Configuration

Figure 1. Impact of threshold configuration
on the autonomic system performance

Event Queue

Task Queue

Process

Execution

State

Navigators

(Process

Execution)
Dispatchers

(TaskExecution)

JOpera API

Event Queue

Process Queue

Figure 2. Workflow Engine Architecture

3.1. Workflow Engine

JOpera [1] is a rapid service composition tool offering a
rich visual environment built on top of Eclipse to support
the whole lifecycle of workflow modeling and execution.
In this paper we focus on the autonomic capabilities of the
JOpera distributed workflow engine, which can be deployed
over a cluster of computers to handle a large number of con-
current workflow executions.

As shown in Figure 2, the engine is designed using a
stage-based architecture. In particular, the workflow exe-
cution (or navigation) stage is decoupled from the invoca-
tion (or dispatching) of the individual tasks of the workflow.
The navigator and the dispatcher stages communicate asyn-
chronously using message queues.

Workflow execution is initiated through the engine API,
which posts a new process execution request message into
the Process queue. This request is processed by the navi-
gator, which instantiates a new workflow and begins to de-
termine which of its tasks should be executed next. Once
it has done so, it puts task execution requests into the Task
queue. These messages are received by the dispatchers that
carry out the actual task execution. Dispatchers use the
Event queue to inform navigators about the progress and
the completion of the task execution. Navigators also con-

2

sume messages from the Event queue to update the state of
the workflow processes with the results of the execution of
the tasks.

This architecture for distributing the workflow execution
has the advantage that workflow execution is not stalled due
to a possibly long-running task. Multiple workflows having
parallel tasks can be concurrently executed by allocating a
pool of threads to perform the corresponding navigation and
dispatching. Also, by providing an appropriate implemen-
tation of the message queues, it is possible to scale-out this
architecture over a cluster of computers, where each node is
allocated to run a navigator or a dispatcher stage.

3.2. Autonomic Controller

In our previous work we have added an autonomic con-
troller component to the workflow engine to automatically
determine the allocation of the cluster to navigator and dis-
patchers. This is very important, as the choice of how to par-
tition the cluster between the two stages can heavily influ-
ence the performance of the engine. In one experiment [6],
the penalty for a misconfigured engine reached 533% in the
worst case. Also, we have shown that the optimal allocation
depends on the characteristics of the workload, and thus the
system should be continuously monitored and adapted to its
workload.

To do so, the autonomic controller runs on a separate
node of the cluster. It monitors the engine’s performance
and reconfigures it according to specific control strategies.
The control loop for self-configuration is shown in Figure
3. First the controller measures the system’s performance
according to the information strategy. Based on the new
information, it decides whether a reconfiguration is needed
using the optimization strategy. The configuration changes
are implemented by choosing which nodes of the cluster
will be affected based on a selection strategy. It is worth
noting that it may not always be possible to apply all recon-
figuration decisions, as these are constrained by the amount
of available resources. After a change has been applied, its
effects may not be immediately visible. Hence, to avoid
repeating the same decisions based on out of date informa-
tion, the controller waits for changes to take effect before
restarting the loop.

The selection strategy defines which nodes are chosen
to be reconfigured, e.g., it prioritizes idle nodes over busy
ones and can also predict the cost of stopping and migrating
an active navigator/dispatcher based on how many work-
flows/tasks are being executed on a particular node.

The information strategy defines which performance in-
dicators of the engine are monitored (e.g., queue sizes,
queue growth, execution throughput etc.). An additional
benefit of stage-based architectures is that the resulting sys-
tem can be easily instrumented to gather useful performance

Monitor Performance

Wait

and performance)

Calculate New Configuration

Apply Reconfiguration Actions

Figure 3. Steps taken by the controller

information by observing the behavior of its queues and
measuring the rate at which messages are processed by each
stage of the engine. Updates of each of these indicators are
periodically sent by each node of the cluster to the auto-
nomic controller using a statistics queue.

The optimization strategy maps the information collected
into reconfiguration actions. To do so, the controller may
use different policies that can be easily replaced to be com-
pared. In [15] we have introduced simple rules that de-
tect imbalances in the system by comparing the size of a
queue with some thresholds. Whereas this is enough to re-
configure the system automatically in response to workload
changes, in the rest of this paper we propose more advanced
optimization policies that do not require thresholds to do so.
In the context of this paper we will focus on improving the
optimization strategy while the selection and the informa-
tion strategy will remain as described before.

4. PID Controller

As a baseline for our empirical comparison, in this sec-
tion we introduce a standard PID Controller used to imple-
ment the optimization policy of the autonomic controller.

A PID controller [7] is a common feedback loop used
in many traditional industrial control systems. As shown
in Figure 4, it maps the control error (e(t), which measures
how far the system is from the reference input) to a con-
trol action that aims at correcting such error. To do so, it
combines three terms: proportional, integral, and derivative,
each having its own weight (or gain).

c(t) = cpe(t) + ci

∫ t

0

e(τ)dτ + cd
de(t)
dt

(1)

The proportional part corrects the current error, the integral
part compensates for the steady state error (if e(t) = 0) and
the derivative part helps to avoid oscillations.

To apply the PID controller to the JOpera engine, we
need to define the control error in terms of the engine’s per-

3

D

Target System

Transducer

Control

Input

Disturbance

Input
Noise

Input

+
-

Control

Error

Measured

Output
Reference

Input

I

P)(tecp

∫
t

i dec
0

)(ττ

tde
cd

)(

PID-Controller
)(te

Figure 4. Feedback control loop with PID con-
troller

formance and define the control actions in terms of which
reconfiguration actions are available.

Since we are interested in removing all external depen-
dencies of the controller, we choose not to rely on an exter-
nal input defining the set-point of the system (which would
have to be adjusted by system administrators). Instead,
we rely on a combination of observable internal parameters
(i.e., the size of the queues) only.

Based on the intuition that the system is ideally config-
ured if its queues are of equal size, we combine the mea-
surements of the queue sizes as follows:

E(t) =
qProcess(t) + qEvent(t)

qTask(t)
(2)

where qQueue(t) is the current queue size. For
qTask(t) = 0 we set E(t) = ∞.

Since E(t) > 0, it is not suitable to be used as direct
input to the PID controller. We thus normalize it:

e(t) =
{

E(t) − 1 E(t) ≥ 1
1 − 1

E(t) 0 < E(t) < 1 (3)

With this definition of the control error, the system is
balanced if qProcess(t)+qEvent(t) = qTask(t) ⇒ e(t) = 0
and thus, no reconfiguration action should occur. Because
in this case the control input is zero (as no change in the
configuration is required), the steady state error is zero as
well and the integral term can therefore be dropped (ci = 0)
from the PID controller.

Likewise, we can define what reconfiguration action
should be taken. If qProcess(t) + qEvent(t) < qTask(t) ⇒
e(t) < 0, more dispatchers should be added, as the task
queue is larger. If e(t) > 0 we are in the opposite sit-
uation, and more navigators (and less dispatchers) are re-
quired. The resulting abstract control error in the interval of
[−∞,∞] is then mapped by the selection strategy to an ac-

tual reconfiguration in the interval bounded by [0, a], where
a is the total number of nodes available in the cluster.

The resulting PID controller still needs to be tuned by
setting appropriate values to the gains of the proportional
cp and derivative cd terms. The advantage of choosing a
standard controller is that the problem of tuning its param-
eter is well understood [18] and several heuristics are avail-
able [5]. Some of these, however, require to subject the
system to controlled input waveforms and cannot always be
applied to tune a system in production which may be subject
to unpredictable workloads. The resulting PID controller is
also not robust with respect to changes in the workload, and
thus has to be tuned repeatedly. Moreover, to rely on a PID
controller with a single control error input we had to com-
bine multiple measurements of the system’s performance in
a somewhat arbitrary way. Using a Multiple-Input Multiple-
Output PID controller would have made its automatic tun-
ing more difficult [12]. We expect to obtain better results
with a controller that is based on a model more tightly cou-
pled to the architecture of the system under control.

5. Balancing Zero-Configuration Policy

The motivation for this policy is to go beyond the fairly
simplistic approach used by the Growth policy (Section 2)
and the very general solution of the PID Controller as dis-
cussed in the previous Section 4. The goal of this policy
is to use an analytical model which is more tightly coupled
to the characteristics of the system and which, as the PID
controller policy does, refrains from using thresholds.

This policy is referred to as the Balancing policy as it
tries to balance the consumers and producers of the queues
based on the rate at which messages are written and read
from them.

Figure 5 shows a summary of the produced and con-
sumed messages. A navigator takes rn messages per second
from the event queue. Each message is processed and, de-
pending on the structure of the workflow being executed, a
task execution request may be written to the task queue with
the probability c1. Therefore – assuming that all navigators
work at the same rate – in one second n navigators take nrn

messages from the event queue and enqueue c1nrn tasks
into the task queue. External process execution requests get
into the system via the process queue with rate e.

On the other side of the queues, a dispatcher takes rd

task execution request messages per second from the task
queue and sends, for each executed task, c2 messages back
into the event queue. Therefore – again, assuming a uniform
task execution speed – d dispatchers get drd tasks from the
task queue and write c2drd events every second to the event
queue.

The queue growth is the difference of the rate at which
messages are put into the queue and are taken out of it. We

4

Event Queue

Task Queue

d Dispatchersn
nrn

nrnc1

drdc2

drd

e

Process Queue

Navigators

Figure 5. Modeling Communication Flows
through the Queues

define p as the total number of messages in the queues con-
sumed by the navigators (the event and process queue) and
q as the number of messages in the task queue, consumed
by the dispatchers. Hence the growth of the queues (p′ and
q′) can be defined as follows, taking into account the num-
ber of messages that are written and read from a queue per
unit of time.

p′ = c2drd + e − nrn (4)

q′ = c1nrn − drd (5)

Following the same strategy as with the PID controller,
the goal of this policy is also to ensure equal queue growth,
so that p′ = q′:

(c2 + 1)drd + e = (c1 + 1)nrn (6)

We resolve (6) with respect to n:

nopt =
(c2 + 1)drd + e

(c1 + 1)rn
(7)

This equation represents how many navigators (nopt) are
needed in order to obtain the balanced state p′ = q′.

If we express the number of dispatchers d as the differ-
ence between the number of available nodes in the cluster a
and the number of navigators n, we can substitute d = a−n
and can define the balanced configuration as a function of
measurable variables:

nopt =
(c2 + 1)ard + e

(c2 + 1)rd + (c1 + 1)rn
(8)

In order to calculate (8), the controller continuously av-
erages the execution rates of navigators and dispatchers to
arrive at rd, rn, measures e from the process queue and uses
a from the current configuration of the cluster. The values
of the two parameters c1 and c2 are calculated by solving
(5) and (4):

c1 =
q′ + drd

nrn
(9)

c2 =
p′ + nrn − e

drd
(10)

and by additionally measuring the growth in both queues
(p′, q′).

As opposed to the information fed into the PID con-
troller, the balancing policy depends on more information
(i.e., the rates e, rd, rn, p′, q′) but does not require any man-
ual tuning.

In order to prevent the system from behaving erratically
at startup, the values of the parameters c1, c2 can be initial-
ized by analyzing the communication protocol between the
dispatcher and navigator. The constant c2 is the number of
messages sent by the dispatcher into the event queue during
the execution of a task. By design c2 = 4, as the dispatcher
goes through four different states during task execution and
sends a notification for each state transition. The constant
c1 is defined as the probability the navigator sends a mes-
sage into the task queue when it processes an incoming mes-
sage. This depends on the structure of the workflow being
executed. However, in general, for a workflow of t tasks,
the navigator will receive 4t events from the dispatcher, one
from the API and 5 from the state changes of the process
executed. Thus:

c1 =
t

4t + 6
(11)

Since a process contains at least on task (t = 1), the lower
bound of c1 is 1

10 . For the upper bound:

lim
t→∞

t

4t + 6
=

1
4

(12)

From this analysis, the initial value of c1 should be bound
to the interval [1

10 , 1
4 [.

To validate this analysis we have measured the values
of the two constants using a heterogeneous set of workflow
patterns. Figures 6 and 7 show that the observed values of
the parameters are consistent with the analysis across all
the kinds of workflows. As an interesting result, the stan-
dard deviation of c1 for workloads with parallel processes is
much higher than for other workloads. This is caused by the
uneven distribution of tasks written to the task queue during
process execution: All tasks of a parallel process are writ-
ten to the queue at the beginning of the process and none
thereafter.

6. Evaluation

In this section we evaluate the performance of the auto-
nomic workflow engine with a controller that uses the poli-
cies presented in Sections 4 and 5. We analyze the behavior
of the Balancing policy and the PID Controller policy for
three different workloads. We compare the workload exe-
cution durations for the different policies, including – as a
baseline – the Growth policy (Section 2) that requires man-
ual setting of the thresholds.

5

Figure 8. Busy Workload Execution Plots

Initial

Parallel

Ctns

Parallel

Initial

Serial

Ctns

Serial

Initial

Single

Ctns

Single

2

1.5

1

0.5

-1.5

-1

-0.5

0

Figure 6. Measuring c1 over multiple work-
loads

6.1. Experimental Setup

The experiments were carried out using two clusters.
The first cluster consists of 30 1GHz dual P-III with
1GB memory, running Sun’s Java Development Kit version
1.5.09 on Linux kernel version 2.4.22. The second cluster
consists of six 1.4GHz dual AMD Athlon with 1GB mem-
ory, running JDK version 1.5.09 on Linux kernel version
2.6.8. The autonomic controller was run by an additional
dedicated node.

-15

-10

-5

0

5

10

15

20

25

Initial

Parallel

Ctns

Parallel

Initial

Serial

Ctns

Serial

Initial

Single

Ctns

Single

Figure 7. Measuring c2 over multiple work-
loads

6.2. Busy Workload

The busy workload consists of 500 workflows, each ex-
ecuting in parallel 10 CPU intensive tasks performing num-
ber primality tests with an execution time of 10 seconds. All
workflows are started at the beginning of the benchmark.
Because of the resource consumption and long duration of
the tasks, we expect this workload to saturate all available
nodes of the cluster and thus require as many dispatchers as
possible to execute the tasks.

Figure 8 shows the execution plots for the Balancing pol-
icy and the PID Controller policy. The upper charts show

6

the evolution of the process, event and task queue, while the
lower charts show the evolution of the configuration consist-
ing of the number of navigators and dispatchers allocated.

The PID Controller policy adapts quickly to the grow-
ing task queue and allocates a maximum of 29 dispatchers
for the whole execution duration. Once the task queue is
nearly empty, the control error will lead the controller to
start a number of navigators. These additional navigators
will quickly fill up the task queue due to the structure of the
workflows having 10 parallel initial tasks. The growth of
the task queue will cause the controller to increase the num-
ber of dispatchers. This pattern is repeated several times,
letting the configuration oscillate until the workload is pro-
cessed completely.

The Balancing policy behaves very similar to the PID
Controller policy in that it assigns most nodes of the cluster
to run dispatchers. In contrast to the PID controller it avoids
oscillations, resulting in a much smoother evolution of the
configuration. The stability of the configuration also results
in a steady decrease of the process queue size.

6.3. Burst Workload

The motivation of this workload is to test whether the au-
tonomic controller can reconfigure the system as the charac-
teristics of the workload change. The workload starts with a
burst of 500 processes which execute a sequence of 10 CPU
intensive tasks lasting 1 second. As soon as 95% of the pro-
cesses terminate, the second burst is started. It consists of
2000 processes of 10 parallel empty tasks with a duration
approximately 0s. Again, as soon as 95% of the processes
have finished, a third burst is started similar to the first one.
The fourth burst has the same characteristics as the second.

We expect an approximation of the following configura-
tion evolution for this experiment. When bursts 2 & 4, each
containing ten tasks to be executed in parallel are fed into
the system, the task queue will grow very fast. As the tasks
however can be executed in virtually no time, not many dis-
patchers will be required. The event queue will soon after
also start to grow very fast. This is due to the many events
that are generated for the quickly executed tasks. Because
of the proportionally big event queue, the controller is likely
to allocate more navigators. In contrast to this, the task
queue will not grow nearly as quickly in case of bursts 1
& 3. In fact, the task queue is expected to grow shortly and
then to maintain the size (as for each task taken from it, a
new task will be enqueued as the tasks are executed seri-
ally). After each burst we expect the controller to slowly
increase the number of dispatchers as this type of workload
requires more dispatchers. The evolution of the queues sizes
described before can be observed in Figure 9.

The PID Controller policy does not completely follow
the expected reconfigurations. It starts with about 20 dis-

patchers in order to cope with the more CPU intense work-
load. At second 170, after the second burst has been started,
it starts to allocate more navigators. The reconfiguration re-
quired for the third burst however is not completely carried
out. The controller allocates roughly equal numbers of nav-
igators and dispatchers. The configuration change for the
fourth burst again is as expected as more navigators are al-
located.

The Balancing policy behaves according to the expecta-
tions outlined before by allocating a large number of dis-
patchers at the first and the second burst. For the second
burst the number of navigators is increased but the configu-
ration is unstable. It seems to be much harder to get a sta-
ble configuration for processes with longer and busier tasks
than with short idle tasks. The reason for this is the high ex-
ecution rate of the navigators. A navigator is able to handle
up to 200 events per second. Stopping or starting just one
navigator results in a big change in the event queue growth
which then leads to a very varying input for the policy. The
fourth burst finally is handled by using about 20 navigators.

Besides a difference in the reconfiguration decisions
taken in response to the bursts, the Balancing policy
also seems to maintain a much more stable configuration
throughout the experiment. In contrast, the controller per-
forms many more reconfigurations and does not get into a
stable state in case of the PID Controller policy. Moreover,
the configuration seems to oscillate at times, for instance
during the execution of the first burst. This oscillation is due
to the parameter setting of the PID controller for this spe-
cific type of workload. The parameters are set once and are
used for all workloads. It clearly is not possible to choose
these values so that they fit for all types of workloads. Dur-
ing the whole course of the experiment, the PID Controller
policy requires twice as many reconfigurations than the Bal-
ancing policy does, performing approximately 200 recon-
figurations.

6.4. fMRI Workload

The processes of this workload are used in real experi-
ments in the field of Functional Magnetic Resonance Imag-
ing (fMRI)[8]. Such a process is used to process raw data
of brain scans and takes in a first step the raw data, aligns
it to a reference brain image by reslicing it, averages over
several scans executed with different wavelengths, and fi-
nally slices along the x, y and z dimensions. The structure
is simple, with two phases of parallel program executions.

The workload consists of ten fMRI processes which are
started one after the other with a delay of 10s. The challenge
of this workload is that the processes contain relatively long
executing tasks (up to twenty seconds). As the workload
consists only of few processes started continuously one after
the other, the queues are virtually empty for most of the

7

Figure 9. Burst Workload Execution Plots

time (see plots in Figure 10). This makes it very difficult
for a policy observing queue sizes to select an appropriate
configuration.

The PID Controller policy reacts to this challenging
workload with many reconfigurations. As the task queue
is mostly empty and the event queue shows few peaks only,
this policy assigns on average slightly more navigators than
dispatchers. A spike in the event queue is usually fol-
lowed by an allocation of an increased number of naviga-
tors. Again in case of this workload, the PID Controller
policy seems unable to maintain a stable configuration, let-
ting the configuration oscillate slightly.

The Balancing policy behaves better than the PID Con-
troller policy and on average uses two dispatchers more,
which seems reasonable in face of the computationally very
intense tasks. This policy also leads to fewer reconfigura-
tions (about 20 compared to 40 reconfigurations for the PID
Controller policy as Figure 12 shows).

6.5. Comparison

Figure 11 shows the execution durations of the three
workloads using the Growth policy, the PID Controller pol-
icy and the Balancing policy. For the Growth policy, the
best known threshold settings (10/5) were used.

As the qualitative analysis already has pointed it out, the
the PID Controller policy and the balancing policy are about
equally fast (average of 1103.5s and 1098.3s) for the Busy
Workload, but more than 40% faster than the Growth Strat-
egy (1920s). The Growth policy does not assign as many
dispatchers as the other two policies do and hence requires
more time to execute the workload.

For the Burst Workload the improvement is not as ex-
plicit, but still 20% for the Balancing policy (738.45s) and
9% for the PID Controller policy (837.88s) compared to the
Growth policy (917.98s). This is still a good result, even
if the qualitative analysis has shown that improvements are
still possible. If we change the constants of the Growth pol-
icy, we are able to push down the execution time to the value
of the PID Controller, but we loose about 20% performance
in case of the Busy Workload, illustrating again that thresh-
olds are geared toward specific workloads.

In case of the fMRI Workload, we have about the same
performance gain than for the Burst Workload. The Bal-
ancing policy (177.5s) is 22% faster than the Growth policy
(226.6s) and the PID Controller policy has a gain of 8%
(208.9s).

In order to highlight the differences between the PID
Controller and the Balancing policy, which processed the
workloads similarly fast, Figure 12 shows the number of re-

8

PID Controller Policy Balancing Policy

Figure 10. fMRI Workload Execution Plots

configurations required for the two policies. In case of all
workloads, the Balancing policy performs fewer reconfigu-
rations, indicating that in this case the configuration oscil-
lates less during the course of an experiment.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Busy Workload Burst Workload fMRI Workload

T
im

e
[s

]

Growth Policy
PID Controller Policy

Balancing Policy

Figure 11. Performance Comparison

7. Related Work

Zero-configuration is a very important requirement for
improving the acceptance and usability of systems. This
has been recognized, for example, in the area of networking

0

50

100

150

200

250

Busy Workload Burst Workload fMRI Workload

PID Controller Policy

Balancing Policy

R
e
c
o
n
fi
g
u
ra

ti
o
n
s

Figure 12. Number of Reconfigurations

for some time [4].

In the context of autonomic computing, the problem and
the difficulty of configuring controllers based on low-level
performance indicators has been recognized [3]. The use of
higher-level policies and goals has also been studied [10].
Other approaches [13] express the goals in the form of qual-
ity of service parameters which need to be set to define
the behavior of the system. Using these parameters, a QoS
controller estimates the QoS provided by the system in the
short-term, matches it with the desired QoS and performs
configuration changes to optimize the system with respect

9

to the QoS goal. In our approach, we propose to employ
policies that remove the need for any configuration of the
controller.

A more holistic approach [11] goes beyond reconfigur-
ing the engine and also targets at reconfiguring the complete
environment: possible reconfiguration actions for instance
also include moving services used by the workflow between
nodes. Instead of reconfiguring the engine, also the work-
flow can be reconfigured in order to react to a changing en-
vironment [2]. Using late binding, the services used by the
workflow are determined during execution through meta-
data attached to the workflow.

8. Conclusions

Many autonomic systems achieve self-configuration
through a controller component, which monitors a system’s
operations as well as performance and reacts to imbalances
due to workload changes by applying reconfiguration ac-
tions. Whereas employing such a controller can remove the
need for manual system configuration, most simple con-
trollers depend on thresholds and if-then rules, whose pa-
rameters still require tuning. In this paper we have shown
that the performance of an autonomic system can be very
sensitive to the configuration of its autonomic controller.
We argued that manual configuration of an autonomic con-
troller defeats the purpose of self-configuration and that
zero-configuration control policies should be applied in-
stead. We include an experimental study of two such poli-
cies, one based on a standardized PID controller, for which
an extensive literature on tuning techniques is available.
The second is based on an analytical model applicable to
stage-based architectures, where the controller ensures that
the rate of message production and consumption through a
queue remains balanced. This policy can self-tune its oper-
ating parameters based on observable properties of the sys-
tem and thus requires zero-configuration. Our evaluation
in the context to the JOpera autonomic workflow engine
has shown the feasibility of using zero-configuration poli-
cies for realistic workloads. Not only the proposed policies
do not require any manual configuration, but they provide a
significant performance gain over simpler policies based on
thresholds, even when these are optimally tuned.

Acknowledgements

The authors would like to thank Gustavo Alonso and Michal
Young for the many useful comments and Lukas Füllemann
for helping with the experiments.

This work is partially supported by the EU-IST-FP7-
215605 (RESERVOIR) project, the EU-IST-FP6-15964
(AEOLUS) project and by a grant from the Hasler Foun-
dation (ManCom Project No. 2077).

References

[1] JOpera Website. http://jopera.org.
[2] R. Baird, M. Hepner, R. Gamble, and M. T. Gamble. Recon-

figuring workflows of web services. In ICCBSS ’07: Proc.
of the Sixth International IEEE Conference on Commercial-
off-the-Shelf (COTS)-Based Software Systems, pages 131–
140, 2007.

[3] D. Breitgand, E. Henis, and O. Shehory. Automated and
adaptive threshold setting: Enabling technology for auton-
omy and self-management. In ICAC ’05: Proc. of the
Second International Conference on Automatic Computing,
pages 204–215, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[4] S. Cheshire and D. Steinberg. Zero configuration network-
ing: The definitive guide. December 2005.

[5] P. Cominos and N. Munro. PID controllers: recent tuning
methods and design to specification. Control Theory and
Applications, IEE Proc. -, 149(1):46–53, Jan 2002.

[6] T. Heinis, C. Pautasso, and G. Alonso. Design and evalua-
tion of an autonomic workflow engine. In ICAC ’05: Proc.
of the 2nd International Conference on Autonomic Comput-
ing, pages 27–38, 2005.

[7] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[8] J. D. V. Horn. Online availability of fMRI results images.
Journal of Cognitive Neuroscience, 15(6):769–770, 2003.

[9] J. Kephart. Research challenges of autonomic computing.
In ICSE ’05: Proc. of the 27th international conference on
Software engineering, pages 15–22, 2005.

[10] J. Kephart and S. White. A research agenda for business-
driven information technology. In HotAC I: Hot Topics in
Autonomic Computing, Dublin, Ireland, 2005.

[11] K. Lee, R. Sakellariou, N. Paton, and A. Fernandes. Work-
flow adaptation as an autonomic computing problem. In
WORKS ’07: Proc. of the 2nd Workshop on Workflows in
Support of Large-scale Science, pages 29–34, 2007.

[12] G. P. Liu and S. Daley. Optimal-tuning PID control
for industrial systems. Control Engineering Practice,
9(11):1185–1194, November 2001.

[13] D. A. Menascé and M. N. Bennani. On the use of per-
formance models to design self-managing computer sys-
tems. In Proc. of Computer Measurement Group Confer-
ence, pages 1–9, 2003.

[14] J. Parekh, G. Kaiser, P. Gross, and G. Valetto. Retrofitting
autonomic capabilities onto legacy systems. Cluster Com-
puting, 9(2):141–159, 2006.

[15] C. Pautasso, T. Heinis, and G. Alonso. Autonomic execution
of web service compositions. ICWS 2005: Proc. of the Third
IEEE International Conference on Web Services, July 2005.

[16] C. Pautasso, T. Heinis, and G. Alonso. Autonomic resource
provisioning for software business processes. Information
and Software Technology, 49(1):65–80, 2007.

[17] M. Welsh, D. Culler, and E. Brewer. SEDA: an architecture
for well-conditioned, scalable internet services. SIGOPS
Oper. Syst. Rev., 35(5):230–243, 2001.

[18] J. Ziegler and N. Nichols. Optimum settings for automatic
controllers. ASME Trans., 64:759–768, November 1942.

10

