
12 July 2005

Autonomic Execution
of Web Service Compositions

Cesare Pautasso, Thomas Heinis, Gustavo Alonso
Department of Computer Science

ETH Zurich, Switzerland

pautasso@inf.ethz.ch

© Cesare Pautasso | www.jopera.org



212 July 2005 Cesare Pautasso | www.jopera.org

Context: Process-based Composition
 Web services built as process-based compositions

of other Web services

Scalability on Clusters of Computers
 Process Management Infrastructure needs to

scale (many clients, many conversations)
 Web Service Composition Engines run on cluster

of computers to handle large workloads [IJEC’04]



312 July 2005 Cesare Pautasso | www.jopera.org

The Problem: How to Configure the Engine?
 The distributed engine needs to be configured:

 Based on its current (unpredictable) workload
 Based on the available resources of the cluster

 How many resources of the cluster should be
assigned to the engine?

 Difficult to configure the engine apriori
 Difficult to manage the system manually



412 July 2005 Cesare Pautasso | www.jopera.org

The Solution: Autonomic Computing
 The engine should configure itself
 Trade-off between two goals:

 Best Performance (response time, throughput, …)
 Best Resource Allocation (size of the cluster)

 Requirements for the distributed engine design:
 Support on-the-fly reconfiguration
 Provide access to internal performance metrics
 Expose an API for controlling the configuration



512 July 2005 Cesare Pautasso | www.jopera.org

About JOpera
 Modeling service composition behavior

 Graph-based composition language (Visual & XML)
 Development and Debugging tools for Eclipse
 Composition not limited to Web services

 Execution of the composition models
 Efficiency (compiled to Java bytecode)
 Dynamic (late binding, introspection)
 Scalability (run-time is distributed on a cluster with

autonomic self-configuration)
 Extensibility (Eclipse plug-ins to provide custom

service invocation adapters)

www.www.joperajopera.org.org



612 July 2005 Cesare Pautasso | www.jopera.org

Architecture

Remote
Service
Provider

workload

API

Clients

JOpera Distributed Engine



712 July 2005 Cesare Pautasso | www.jopera.org

Architecture

Remote
Service
Provider

Navigator Dispatcher

Service
Invocation
Adapter

5

6

workload

API
Process Control

Process
Queue 4

Task Queue

7

Event Queue

1

Compiled
Process
Structure

2

3

Process
State

Clients



812 July 2005 Cesare Pautasso | www.jopera.org

Remote
Service
Provider

Navigator Disp atcher

Service
Invocation
AdapterS

Architecture

5
2

6
3

4

7

workload

API API
Configuration Monitoring and System ReconfigurationProcess Control

Process
Queue

Task Queue

Event Queue

1 State of the
Configuration

Process
State

Autonomic ControllerClients

performance
indicators

current 
configuration

reconfiguration

Dispatcher

Service
Invocation
Adapter

5

actions

Compiled
Process
tructure

Compiled
Process
Structure

2

3

Process
State



912 July 2005 Cesare Pautasso | www.jopera.org

Autonomic Controller Algorithm
performance
indicators
current 
configuration

reconfiguration
actions



1012 July 2005 Cesare Pautasso | www.jopera.org

Autonomic Controller Policies
 Information Policy

 Define which variables should be monitored
Queue Length, Number of Navigator/Dispatcher Threads

 Optimization Policy
 Map Monitored Variable to Reconfiguration Actions

1. Simple Threshold Policy
2. Differential Policy
3. Proportional Policy

 Selection Policy
 Choose how to implement a reconfiguration plan



1112 July 2005 Cesare Pautasso | www.jopera.org

Evaluation of the Control Policies
 Workload: Peak Response Benchmark

 800 concurrent processes initiated at the same time
 Performance Indicators:

 Total Execution Time
 Average Resource Allocation

 32 node cluster environment (one thread/node)
 Baseline: Static Manual Configuration

 Fast: 10 Navigators, 22 Dispatchers
 Slow: 22 Navigators, 10 Dispatchers



1212 July 2005 Cesare Pautasso | www.jopera.org

Baseline: Slow/Fast Static Configuration

0

5

10

15

20

25

30

35

400 800 1600
Workload size

Nu
m

be
r o

f D
is

p a
t c

he
r s

+N
a v

i g
a t

o r
s

Ti
m

e 
(s

ec
on

d s
)

static 10/22 static 22/10

0

50

100

150

200

250

400 800 1600
Workload Size

Avg Resource Allocation Total Execution Time



1312 July 2005 Cesare Pautasso | www.jopera.org

1. Simple Threshold Policy

Queue 
Length

Action

T

Start one

Stop one

 Start one thread if Queue Length > T
 Stop one thread if Queue Length = 0



1412 July 2005 Cesare Pautasso | www.jopera.org

Tracing the Simple Threshold Policy
Queue 
Length

Action

T

Start one

Stop one

Queue 
Length

Action

T

Start one

Stop one



1512 July 2005 Cesare Pautasso | www.jopera.org

2. Differential Policy
Action

Queue
Length

VariationTstartTstop

Start one

Stop one

 Start one thread if Queue Length Variation > Tstart

 Stop one thread if Queue Length Variation < Tstop



1612 July 2005 Cesare Pautasso | www.jopera.org

Tracing the Differential Policy
Action

Queue
Length

Variation
TstartTstop

Start one

Stop one



1712 July 2005 Cesare Pautasso | www.jopera.org

3. Proportional Policy
Action

Queue 
Length 

Variation

Start one

Stop one
Stop two
Stop Max

Start two
Start Max

 Start/Stop N threads,
proportional to the Queue Length Variation



1812 July 2005 Cesare Pautasso | www.jopera.org

Tracing the Proportional Policy
Action

Queue 
Length 

Variation

Start one

Stop one
Stop two
Stop Max

Start two
Start Max



1912 July 2005 Cesare Pautasso | www.jopera.org

State Space Comparison of the Policies

0

5

10

15

20

25

0 5 10 15 20 25

Number of Navigators

N
um

be
r o

fD
i s

p a
t c

he
rs

Simple
Proportional
Differential

Control Policy

Static

Fast
Performance

Slow
Performance



2012 July 2005 Cesare Pautasso | www.jopera.org

Performance Comparison of the Policies

0

5

10

15

20

25

30

35

400 800 1600
Workload size

Nu
m

be
r o

f D
is

p a
t c

he
r s

+N
a v

i g
a t

o r
s

Ti
m

e 
(s

ec
on

d s
)

static 10/22 simple differential proportional static 22/10

0

50

100

150

200

250

400 800 1600
Workload Size

Avg Resource Allocation Total Execution Time



2112 July 2005 Cesare Pautasso | www.jopera.org

Conclusion
 Manual configuration & management of a

distributed process-based Web service
composition engine is difficult and expensive

 To address this problem, we have shown how to
apply autonomic computing techniques

 Our evaluation indicates that different control
policies can be used to explore the trade-off
between performance vs. resource utilization



12 July 2005

Autonomic Execution
of Web Service Compositions

Cesare Pautasso, Thomas Heinis, Gustavo Alonso
Department of Computer Science

ETH Zurich, Switzerland

pautasso@inf.ethz.ch - www.jopera.org

© Cesare Pautasso | www.jopera.org


