
Autonomic Execution of Web Service Compositions∗

Cesare Pautasso Thomas Heinis Gustavo Alonso
Department of Computer Science

Swiss Federal Institute of Technology (ETHZ)

ETH Zentrum, 8092 Zürich, Switzerland

{pautasso,heinist,alonso}@inf.ethz.ch

Abstract

An increasing amount of Web services are being implemented
using process management tools and languages (BPML, BPEL,
etc.). The main advantage of processes is that designers can ex-
press complex business conversations at a high level of abstrac-
tion, even reusing standardized business protocols. The downside
is that the infrastructure behind the Web service becomes more
complex. This is particularly critical for Web services that may
be subjected to high variability in demand and suffer from unpre-
dictable peaks of heavy load. In this paper we present a flexible ar-
chitecture for process execution that has been designed to support
autonomic scalability. The system runs on a cluster of computers
and reacts to workload variations by altering its configuration in
order to optimally use the available resources. Such changes hap-
pen automatically and without any human intervention. This fea-
ture completely removes the need for the manual monitoring and
reconfiguration of the system, which in practice is a difficult and
time-consuming operation. In the paper we describe the architec-
ture of the system and present an extensive performance evaluation
of its autonomic capabilities.

1 Introduction

Open service oriented architectures face an important
scalability problem when the services published on the Web
become successful. Successful services have the poten-
tial to be concurrently invoked by a very large number of
clients [12]. In the past few years, process management
tools and languages have gained widespread acceptance to
model and enforce the business conversations and protocols
followed by the Web services (e.g., [1, 10, 18]). Thus, scal-
ability is an important issue that imposes high demands on
the underlying process management infrastructure. When-
ever a new conversation is started, a new process instance
has to be created. Then, for every message exchanged with

∗Part of this work is supported by grants from the Hasler Foundation
(DISC Project No. 1820) and the Swiss Federal Office for Education and
Science (ADAPT, BBW Project No. 02.0254 / EU IST-2001-37126).

the service, the state of the underlying process has to be
updated to reflect the progress of the conversation.

Typically, to achieve the required level of scalability, the
correlation of the messages and the management of their
corresponding business processes are partitioned among a
replicated execution environment, for example, a cluster
of computers [9]. This has the advantage that such dis-
tributed process execution environments can be scaled to
handle large workloads. However, the configuration of such
cluster-based systems is not easily determined a priori, es-
pecially when facing an unpredictable workload. In or-
der to deal with such a highly variable volume of mes-
sages, dynamic reconfigurability is a very important re-
quirement [17]. With it, the size of a running system can be
adapted to keep the balance between servicing its workload
with optimal performance and ensuring efficient resource
allocation.

In this paper we present the architecture of an autonomic
process execution platform for Web service composition
which can dynamically and autonomously determine its op-
timal configuration based on the current workload. This is
an important contribution as most existing systems tackle
the scalability problem by statically and manually partition-
ing the workload across different sites [4].

As part of the JOpera project [13], we have designed
and implemented a flexible platform for process execution
that achieves scalability by replicating its key components
across a cluster of computers. Additionally, the system
employs an autonomic controller that monitors the current
workload and state of the system. It uses this information to
determine whether the system is running in the optimal con-
figuration or, alternatively, whether reconfiguration actions
have to be carried out. For example, if a peak of request
messages is detected, more nodes of the cluster are allo-
cated to process them. To do so, the autonomic controller
uses different policies which can be chosen according to dif-
ferent goals (e.g., minimize resource allocation or minimize
response time). Our experiments show the feasibility of the
approach and demonstrate that the autonomic controller can
reconfigure the system automatically.



The paper is organized as follows: in Section 2 we
present the architecture of the JOpera Web service compo-
sition platform. Our approach of extending a reconfigurable
system with autonomic features is outlined in Section 3. A
performance evaluation of several different control policies
is presented in Section 4. In Section 5 we briefly discuss
related work before drawing some conclusions in Section 6.

2 Background

In this section we give a brief overview of the distributed
architecture of the JOpera Web service composition plat-
form (Figure 1). More details can be found in [14].

Processes model the interactions between different Web
services in terms of their data exchanges and constraints in
the order of invocation [3]. The execution of a process be-
gins with a request message sent by a client. Such requests
are added to the process queue and handled by the navigator,
which executes the processes by scheduling the invocation
of the next services based on the service invocations that
have already been completed.

Once the navigator determines that a certain service
is ready to be invoked, the corresponding service invoca-
tion requests are stored in the task queue. The interaction
with the service provider using the appropriate mechanisms
and protocols (e.g., by exchanging messages encoded in
SOAP [16]) is managed by the dispatcher component. The
name of this component reflects its function of dispatching
messages to and from the corresponding service providers.
After a response message has been received, the dispatcher
notifies the navigator through the event queue by posting the
results of the invocation so that the process may resume its
execution.

We have chosen to decouple the execution of the pro-
cesses from the execution of their tasks because these oper-
ations have a different granularity. It is to be expected that
the invocation of a remote service performed by the dis-
patcher may last significantly longer than the time taken by
the navigator for scheduling it.

Decoupling process navigation from service invocation
also enables the system to scale along two different and or-
thogonal directions. In case a large service invocation ca-
pacity is required, the dispatcher thread can be replicated
to manage the concurrent invocation of multiple services.
Likewise, if many processes have to be executed concur-
rently, the navigator can be replicated as well. The result-
ing pool of navigator and dispatcher threads are linked by
event queues. This way, navigators generate service invoca-
tion requests which are consumed by the dispatchers. Vice
versa, dispatchers send event notifications back to the navi-
gators with the results of the invocations.

By providing a distributed implementation of such
queues, it is possible to scale the system to run on a cluster
of computers, as navigators and dispatchers can be physi-

cally located on different nodes. Furthermore it is possible
to dynamically grow and shrink the size of the system with-
out disrupting its normal operation.

3 Autonomic Execution of Compositions

Given the reconfigurable architecture of JOpera [6], in
this section we present the design of the autonomic con-
troller, the component responsible for automatically config-
uring the system.

3.1 Control Algorithm

The control algorithm implemented by the autonomic
controller loops over the following three phases [11]. First,
during the monitoring phase, a snapshot of the current state
of the system configuration is taken. The information policy
defines what information is collected at this stage. Second,
during the planning phase, the controller uses the collected
information to determine whether the system is balanced or
whether a configuration change is necessary. The optimiza-
tion policy determines the criteria (e.g., thresholds) and the
outcome (e.g., a certain number of idle nodes of the cluster
can be released). The actual configuration changes are car-
ried out during the third phase, which is simply skipped if
no such actions are required. The selection policy is used
to convert the general reconfiguration plan to a concrete
change in the configuration, using additional information
collected during the monitoring phase.

3.2 Information Policy

The information policy defines which performance indi-
cators and which part of the configuration information are
fed back into the autonomic controller.

By considering the architecture of the distributed pro-
cess execution platform (Figure 1), there are several points
that can be instrumented to provide performance indica-
tors. Since the navigator and dispatcher threads communi-
cate asynchronously through event queues, it is possible to
sample the current queue length in order to detect whether
the system is balanced. In case the queue grows, it is likely
that there are not enough consumers processing its events.
Conversely, if the length of a queue drops, there may be too
many consumers (or too few producers).

In order to compare the performance of different opti-
mization policies, it may also be useful to measure their
corresponding resource allocation. To do so, the system
can track for how long it has been using a certain node of
the cluster. These allocation logs are kept as part of the con-
figuration information.



Remote
Service
Provider

Navigator Dispatcher

Service
Invocation
Adapter

Compiled
Process
Structure

5

2

6

3

4

7

workload

APIAPI
Configuration Monitoring and System ReconfigurationProcess Control

Process
Queue

Task Queue

Event Queue

1
State of the

Configuration

Process
State

Autonomic ControllerClients

performance
indicators

current
configuration

reconfiguration
actions

Figure 1. Architecture of the JOpera Autonomic Service Composition Platform

3.3 Optimization Policy

The optimization policy specifies how to achieve certain
goals in terms of mapping a combination of the previously
defined performance indicators onto a set of reconfiguration
actions. In general, the controller addresses multiple (and
contradictory) goals. First of all, it should ensure that the
system reacts with reasonable performance under a given
workload. The simplest way to achieve this points to a
strategy that configures the system to always provide ex-
cess capacity so that unpredictable peaks in the workload
can be absorbed. Although this approach maximizes the
performance of the system measured in term of its process
execution capacity, it turns out to be wasteful in terms of re-
source allocation. Thus, the optimization policy must pro-
vide support for both of these goals: maximizing the sys-
tem’s throughput and minimizing the resource allocation.

The simplest optimization policy we have considered
uses a single threshold T compared to a certain non-
negative controlled variable v. Whenever v > T the con-
troller decides to grow the size of the system by one thread.
This ensures that peaks in the workload causing the con-
trolled variable to increase will be detected and taken care
of by growing the system. If v = 0, the outcome is to shrink
the size of the system by one thread. No reconfiguration ac-
tion is planned if 0 < v ≤ T .

Queue
Length

Action

Simple Threshold Policy

T

Start one

Stop one

We have applied this simple control policy by binding
the controlled variable v to the length q of the queue of
events consumed by the navigators and the dispatchers and

by introducing different thresholds (Td, Tn) for each kind
of thread. To tune their values, the thresholds can be in-
terpreted as the number of events which is expected to be
handled by each kind of thread. Typically Tn > Td, as
navigators can handle a larger volume of events than dis-
patchers.

As opposed to reading the current length of the event
queue, the differential control policy uses the first order
variation (Δq = q(t) − q(t − 1)) of the queue length to
make its decisions.

Action

Differential Policy

Queue
Length

Variation
TstartTstop

Start one

Stop one

Still, the possible outcomes and the decision strategy are
the same as in the simple threshold policy. We introduced
this policy because the length of the event queues is a good
indicator of the internal activity of the system. Its variations
can be used to detect whether the system is lagging behind
(when Δq > 0) or the number of events to be processed is
diminishing (Δq < 0). Thus, two different thresholds are
used to determine whether a new thread should be started
(Δq > Tstart > 0) or stopped (Δq < Tstop < 0).

Action

Proportional Policy

Queue
Length

Variation

Start one

Stop one
Stop two
Stop Max

Start two
Start Max



The proportional control policy uses a set of thresholds
to determine whether one or more threads should be started
or stopped, proportionally to Δq. To avoid instability prob-
lems, we set a limit to the maximum number of threads that
can be started or stopped at once. This policy also uses the
previously described Δq as controlled variable, since it pro-
vides both positive and negative values that can be used as
input into the control decisions. Compared to the simple
and differential policies, we expect this policy to be more
reactive, as it can plan to start many threads at once if a
large variation in the workload is detected.

3.4 Selection Policy

The selection policy defines how to map abstract recon-
figuration decisions to concrete actions affecting the current
system configuration. One of the reasons for separating the
planning of the configuration change from the actual modi-
fication actions is that, depending on the current state of the
configuration, it may not always be possible to follow the
plan. For example, when the system is overloaded, there
may not be any spare capacity available to start new threads.
A simple model of the system representing the most current
state of the configuration is stored in the form of a list con-
taining the IP address of each node and the set of threads
the node is running. This model is stored centrally so that
it is easy to access and modify. It is updated by the nodes
which register and unregister themselves.

With this information the controller may already find out
which nodes can be used to grow the system (the nodes
which are currently not running a particular kind of thread).
Conversely, only the nodes that are already in use are the
candidates for being released, if the controller decides to
shrink the system size.

4 Measurements

The goal of the measurements is to show the autonomic
process execution platform in action, whereby the config-
uration of the system is adapted automatically to different
workload conditions. We begin with a brief description of
the characteristics of the workload we have used to bench-
mark the Web service composition platform and its auto-
nomic reconfiguration capabilities. In the following, we
show the performance of a static configuration to demon-
strate JOpera’s basic scalability properties before we move
on to the evaluation of the three autonomic control policies
introduced in Section 3.

4.1 Workload and testbed description

Since there are no standardized benchmarks for auto-
nomic Web service composition execution platforms, we

have defined a simple workload to evaluate the system un-
der extreme conditions. The workload imposed on the sys-
tem can be described as a peak of concurrent client requests
to start the execution of a certain number of new processes.
Thus, the size of the workload can be characterized by the
number of processes to be executed concurrently. Although
the number of tasks and the structure of the processes also
influence the performance of the system, for these experi-
ments we have focused on a homogeneous workload con-
sisting of processes composed by 10 parallel tasks whose
invocation time has been set to 8 seconds. We limited our
experiments to this kind of workload because this simpli-
fies the analysis of the results of our experiments and due
to space limitations. We plan to continue the evaluation
the system with heterogeneous and continuous workloads
as part of future work. For the experiments, JOpera has
been deployed on a cluster of up to 32 nodes. Each node is a
1.0GHz dual P-III, with 1 GB of RAM, running Linux (Ker-
nel version 2.4.22) and Sun’s Java Development Kit version
1.4.2.

4.2 Static configuration

At the very beginning of this paper we have argued that
scalability is an important issue for Web service compo-
sition execution tools and we have also been describing
JOpera’s ability to execute processes across a cluster of
computers. Figures 3a and 3b demonstrate JOpera’s scal-
ability: while it takes 973.22s to execute 800 concurrent
processes using only 1 dispatcher and 1 navigator thread, it
requires only 73.13s to process the same workload with a
system statically configured to use 10 navigator and 22 dis-
patcher threads. This static 22/10 configuration is suitable
for this kind of workload: at the time when the processes are
started, the system is able to cope with it. Enough threads
are ready to handle the execution of both processes and per-
formance indicators.

However, configuring the system statically reveals two
main problems. First, static configuration potentially leads
to a waste of resources since the cluster remains fully allo-
cated to JOpera although it would be possible to reduce the
resource allocation after processing the surge. Second, the
configuration may not be optimal to deal with all kinds of
workloads, hence reconfiguration is still required. Manual
reconfiguration is not a trivial task because misconfiguring
the system may lead to a loss in performance, as can be seen
when comparing the batch execution time achieved with the
static 22/10 and the static 10/22 configurations for the same
workload (Figure 2).

4.3 Autonomic configuration

In order to compare the autonomic controller with a stat-
ically configured system, we have implemented and eval-



0

5

10

15

20

25

30

35

400 800 1600

Client Requests

N
u

m
b

e
r

o
f

D
is

p
a

tc
h

e
rs

+
N

a
v
ig

a
to

rs

T
im

e
(s

e
c
o

n
d

s
)

static 10/22 simple differential proportional static 22/10

0

50

100

150

200

250

400 800 1600

Client Requests

Control Policy

Resource Allocation Batch Execution Time

Figure 2. Comparison of the policies

uated the policies described in Section 3 using different
workload sizes and configuring the control algorithm to run
every second.
Simple Policy: The simple policy configures the system by
adding one navigator thread at a time to the configuration as
long as the size of the process queue exceeds the threshold
Tn = 50. The same holds with Td = 10 for the dispatcher
threads servicing the task queue. Figure 3c shows the simple
policy responding to a peak of 800 processes. Although the
process queue is filled up quickly, the configuration adapts
only slowly. The size of the task queue grows compara-
tively high because of the large number of navigator threads
that are active as soon as the configuration has grown to its
maximum size. The simple policy attempts to grow the con-
figuration as long as the queue sizes are bigger than Tn and
Td. Given the values of the thresholds, this happens during
most of the experiment’s duration.
Differential Policy: Instead of only considering the queue
length, the differential policy takes the growth of the queue
into consideration. Once the growth of the task queue has
overstepped the T d

start threshold (set to 10 in this exper-
iment), one dispatcher thread is added to the configura-
tion. Vice versa, if the variation of the queue is below
T d

stop = −10, a dispatcher is removed from the configu-
ration. The same mechanism applies to navigator threads,
except that T n

start = 50, T n
stop = −50. As it can be seen in

Figure 3d, this policy adapts to the current workload with-
out letting the system constantly grow until saturation is
reached. Instead, the growth of the system is coupled with
the growth of the workload. The thresholds chosen allows
the controller to follow small variations in the workload.
Small increases of the task queue length result in an increase
in the number of dispatcher threads.
Proportional Policy: The proportional policy tries to im-
prove the reaction time of the system. In contrast to the sim-
ple and differential policies, the proportional policy adds or

removes a variable (but limited) number of threads to the
current configuration proportionally to the variation of the
queues. The magnitude of the reconfiguration actions has
been limited to 3 navigators and 10 dispatchers. By adjust-
ing the number of threads in larger increments, the system is
able to adapt faster to the workload peak (Figure 3e). Given
the initial surge of the process queue, the system reaches a
stable configuration much faster by quickly increasing the
number of navigators and in turn also the number of dis-
patchers. Similar to the simple policy, the size of the task
queue remains quite high in this case as well, as the con-
figuration uses a large number of navigators. However, the
controller reacts to this by adding more dispatchers, causing
a drop in the task queue (Figure 3e, seconds 6, 12 and 24).

4.4 Comparison of the policies

In order to develop an idea about how well the different
policies perform, we have evaluated the policies regarding
the time used to execute batches of 400, 800 and 1600 pro-
cesses and the average resource allocation over this time.
Figure 2 gives an overview of the results.

The time for executing a batch was measured as the time
between the arrival of the first client request in the queue
and the time the execution of the last process was com-
pleted. The average resource allocation was measured as
the sum of the time each of the nodes was running a JOpera
thread divided by the duration of the batch.

Not surprisingly, the average resource allocation for the
two static configurations, with 22 dispatchers and 10 nav-
igators and vice versa, is 32. A more interesting result
is that, although the same number of nodes is used, the
time to execute the same batch is between 50% (batch size
400 processes) and 82% (batch size 1600 processes) bigger.
This behavior implies that the static configuration using 10
navigators and 22 dispatchers is more suitable to run the
workload. Thus, configuring the system manually and stat-
ically potentially leads to a suboptimal configuration both
in terms of performance and resource allocation. The static
22/10 configuration serves as a good example for this be-
havior: while it is between 10% and 62% faster than the
autonomic policies tested, it also uses the most resources
(between 108% and 262% more).

As shown in Figure 3c, the simple controller slowly
grows the system to its maximum size keeping the number
of dispatchers and navigators balanced, which turns out to
be a sub-optimal configuration. This leads to an excessive
use of the resources, although the high allocation does not
enhance the performance. The time required to execute the
800 processes batch using the simple policy is 22% higher
than in case of the static 22/10 configuration. The two main
reasons for this behavior are the following. First, the simple
policy adapts slowly to the workload imposed on the sys-
tem. In the case of 800 processes it requires 24.49 seconds



0

200

400

600

800

1000

1200

0 200 400 600 800 1000

Time [s]

0

5

10

15

20

25

30

0 200 400 600 800 1000

Time [s]

a) Static Configuration with 1 Navigator, 1 Dispatcher

b) Static Configuration with 10 Navigators, 22 Dispatchers

c) Simple Policy, T = 50, T = 10n d

d) Differential Policy, T = -10,
d

stop T = 10, T = -50, T = 50
d n n

start stop start

e) Proportional Policy

Tasks in queue Navigators Dispatchers

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [s]

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Time [s]

Q
u
e
u
e

S
iz

e
Q

u
e
u
e

S
iz

e

T
h
r
e
a
d
s

T
h
r
e
a
d
s

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [s]

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Time [s]

Q
u
e
u
e

S
iz

e

T
h
r
e
a
d
s

Time [s] Time [s]

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120
0

5

10

15

20

25

30

0 20 40 60 80 100 120

Q
u
e
u
e

S
iz

e

T
h
r
e
a
d
s

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Time [s]

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Time [s]

Q
u
e
u
e

S
iz

e

T
h
r
e
a
d
s

Figure 3. Traces of the length of queues (left) and the state of the configuration (right) with different
control policies reacting to a workload peak of 800 concurrent processes



0

5

10

15

20

25

0 5 10 15 20 25

Number of Navigators

N
u

m
b

e
r

o
f

D
is

p
a

tc
h

e
rs

Simple
Proportional
Differential

Control Policy

Static

Figure 4. Configurations reached by different
control policies

to grow to the full configuration because it adds only 1
node at a time. The other reason consists of the suboptimal
partitioning of the nodes between navigators and dispatch-
ers. This can also be seen in Figure 4. This figure illus-
trates the evolution of the configuration along its two main
dimensions (the number of navigators and the number of
dispatchers) when using different policies. While the static

22/10 configuration performs better and the inverse con-
figuration (22 navigators, 10 dispatchers) performs worse,
the simple policy converges to an intermediate configuration
(17n, 15d) because both queue sizes exceed the thresholds,
letting the configuration grow symmetrically until satura-
tion is reached. All other policies tend towards the former
with (8n, 22d) for the differential policy and (12n, 20d) for
the proportional policy.

The differential policy performs better (13% in the case
of 800 processes batch) than the simple policy regarding
time and has up to 39% (400 processes batch) smaller al-
location than all other policies. The reason why the execu-
tion of the same workload takes up to 62% longer than the
static 22/10 configuration is found in its slow adaptation to
the workload, similar to the simple policy. In contrast to
the simple policy, the differential policy only increases the
number of threads as long as the queue growth is bigger
than the thresholds T d

start or T n
start: as soon as the process

queue stops growing (8n, 7d in Figure 4 or after 10s in Fig-
ure 3d), the number of navigators remains the same whereas
the number of dispatchers is still increasing according to the
growth of the task queue. This slow and also resource sav-
ing way of growing the configuration is the main reason
why the allocation is generally low: this policy does not

saturate the system like the simple policy, but rather devotes
only the strictly necessary nodes.

The proportional policy performs only slightly worse
with regard to the batch time than the static 22/10 configu-
ration, but does better in terms of allocation. The difference
in time can be explained with the delay required to grow
the configuration: while this is none in case of the static
configuration, it takes 14.56 seconds to reach the full con-
figuration in case of the proportional policy, increasing the
overall batch execution time by a maximum of 18%.

Regarding the resource allocation, the result of this pol-
icy compared to the static configuration is only little lower
when executing the 1600 processes batch and significantly
lower when executing the 400 processes batch. This result
indicates that the controller adapts to the size of the work-
load. In case of 1600 processes, the controller grows the
configuration until all nodes are used whereas in the case of
400 processes only part of the nodes will be used.

4.5 Discussion

Using the simple strategy of monitoring the length of
process and task queue in order to determine reconfigura-
tion actions, has already led to very promising results. As
expected however, it is difficult to determine a globally op-
timal policy. The policies we evaluated offer different char-
acteristics along the trade-off between execution time and
resource allocation. Thus, a policy can be chosen to drive
the automatic configuration of the system according to the
overall goal within this trade-off.

Although the policies we introduced already performed
satisfactorily, we intend to further extend them. For ex-
ample, the random selection policy works well in homo-
geneous environments, but may need a more refined model
of the configuration and more advanced selection strategies
to deal with heterogeneous environments. Similarly, the in-
formation policy we introduced is based on the current state
of the system. It would be useful to enhance it by taking
into account the history of the system’s configuration and
past performance.

Each policy can also be tuned by setting its threshold pa-
rameters. In the experiments, we did so heuristically by ob-
serving the behavior of the system and estimating the capac-
ity of each type of thread. In general, setting these thresh-
olds appropriately tends to be difficult and misconfiguring
them may also result in a performance penalty. As part of
future work we plan to explore this issue in more detail.

5 Related Work

A large amount of research results are available in the
context of scalable process execution engines (e.g., [2, 4,
7, 9, 14]). However, given the design of a distributed en-
gine, the practical problem of how to configure it at runtime



in order to achieve good performance under different work-
load conditions is still poorly understood. As an example,
the GOLIAT [5] tool uses the expected characteristics of
the workload to make predictions about the performance of
a certain configuration of the Mentor-lite engine. At de-
ployment time, the tool helps the user to determine interac-
tively how many resources should be allocated to achieve
the desired level of performance. In this paper, we show
how to replace such manual configuration steps with an au-
tonomic controller [8]. Thus, we propose to determine the
configuration of the distributed engine automatically, taking
into account measurements of the system’s performance un-
der the actual (and unpredictable) workload. Furthermore,
with our approach it is not required to allocate resources
to the engine on a permanent basis, as the autonomic con-
troller can grow and shrink the system dynamically using
whatever shared resources are available at the moment. In
this context, the problem of optimally choosing which re-
source to use is dual to a resource management and schedul-
ing problem (e.g., [15]): whereas a scheduler attempts to
fit the workload to the available resources, the goal of the
autonomic controller is to adapt the configuration of the re-
sources to better service the workload.

6 Conclusions

This paper presents the architecture of an autonomic pro-
cess execution platform for supporting service oriented ar-
chitectures. It features a unique mix of distributed execution
and dynamic reconfigurability that make it suitable for auto-
nomic reconfiguration. This shows the feasibility of apply-
ing autonomic computing principles to automatically adapt
the configuration of the process execution platform in re-
sponse to unexpected variations in its workload. Further-
more, employing an autonomic controller greatly reduces
the administrative overhead of manually reconfiguring the
system, which is a difficult and time consuming task.

In particular, we have described the control algorithm
and policies followed by the autonomic controller, the
key component implementing the autonomic reconfigura-
tion capabilities. As our performance evaluation with dif-
ferent workload sizes indicates, the controller outperformed
the manual, static configuration by achieving a good trade
off between two different goals: minimizing resource allo-
cation while guaranteeing satisfying performance. Further-
more, we showed that the performance of the controller de-
pends on the actual information, optimization and selection
policies that are used.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web ser-
vices: Concepts, Architectures and Applications. Springer,
November 2003.

[2] T. Bauer and P. Dadam. A Distributed Execution Environ-
ment for Large-Scale Workflow Management Systems with
Subnets and Server Migration. In Proceedings of the 2nd IF-
CIS International Conference on Cooperative Information
Systems (CoopIS’97), pages 99–108, Kiawah Island, South
Carolina, USA, 1997.

[3] F. Casati and M.-C. Shan. Dynamic and Adaptive composi-
tion of e-services. Information Systems, 26:143–163, 2001.

[4] G. Chafle, S. Chandra, V. Mann, and M. G. Nanda. De-
centralized Orchestration of Composite Web Services. In
Proceedings of the 13th World Wide Web Conference, pages
134–143, New York, NY, USA, 2004.

[5] M. Gillmann, W. Wonner, and G. Weikum. Workflow Man-
agement with Service Quality Guarantees. In Proceedings
of the ACM SIGMOD Conference, pages 228–239, Madi-
son, Wisconsin, 2002.

[6] T. Heinis, C. Pautasso, and G. Alonso. Design and Evalua-
tion of an Autonomic Workflow Engine. In Proc. of the 2nd
International Conference on Autonomic Computing, Seattle,
WA, June 2005.

[7] P. Heinl and H. Schuster. Towards a Highly Scaleable Archi-
tecture for Workflow Management Systems. In R. R. Wag-
ner and H. Thoma, editors, Proceedings of the 7th Interna-
tional Workshop on Database and Expert Systems Applica-
tions, pages 439–444, Zurich, Switzerland, September 1996.

[8] IBM. Autonomic Computing: Special Issue. IBM Systems
Journal, 42(1), 2003.

[9] L. jie Jin, F. Casati, M. Sayal, and M.-C. Shan. Load Bal-
ancing in Distributed Workflow Management System. In
G. Lamont, editor, Proceedings of the ACM Symposium on
Applied Computing, pages 522–530, Las Vegas, USA, 2001.

[10] F. Leymann. Web services: Distributed Applications with-
out Limits. In Proceedings of the International Conference
on Business Process Management (BPM 2003), pages 123–
145, Eindhoven, The Netherlands, 2003.

[11] N. S. Nise. Control systems engineering. Wiley, 4th edition,
2004.

[12] J. Norris, K. Coleman, A. Fox, and G. Candea. OnCall:
Defeating Spikes with a Free-Market Application Clus-
ter. In International Conference on Autonomic Comput-
ing (ICAC’04), pages 198–205, New York, New York, May
2004.

[13] C. Pautasso. JOpera: Process Support for more than Web
services. http://www.jopera.org.

[14] C. Pautasso and G. Alonso. JOpera: a Toolkit for Efficient
Visual Composition of Web Services. International Jour-
nal of Electronic Commerce (IJEC), 9(2):104–141, Winter
2004/2005.

[15] B. A. Shirazi, A. R. Hurson, and K. M. Kavi, editors.
Scheduling and Load Balancing in Parallel and Distributed
Systems. IEEE Computer Society Press, 1995.

[16] W3C. Simple Object Access Protocol (SOAP) 1.1, 2000.
http://www.w3.org/TR/SOAP.

[17] K. Whisnant, Z. T. Kalbarczyk, and R. K. Iyer. A system
model for dynamically reconfigurable software. IBM Sys-
tems Journal, 42(1):45–59, 2003.

[18] L.-J. Zhang and M. Jeckle. The Next Big Thing: Web ser-
vices Collaboration. In Proceedings of the International
Conference on Web services (ICWS-Europe 2003), pages 1–
10, Erfurt, Germany, 2003.


