
Services are composed at the level of their interfaces.

The visual composition
language is
not affected
when
adding
support to
invoke a
new kind
of service
(future-proof)

JOpera provides an extension point for service invocation plugins
for calling different kinds of services using the most efficient,
secure, reliable and convenient mechanism

JOpera uses a simple visual syntax based on graphs to model the
interaction between different services as a Process.
The structure of a Process is defined by drawing:

the between parameters of service interfaces
the defining the partial order of service invocations, loops,

branches and exception handling

Main language features

composite services are composable

a composite service can invoke itself

list-based loops and control flow loops

of interfaces to implementations

of data and interaction style mismatches can be
solved with the same visual syntax used to compose the services

a composition can interact with the runtime architecture

The visual language is to Java code for execution

Data Flow
Control Flow

Nesting:

Recursion:

Iteration:

Dynamic late binding

Interface Adaptation

Reflection:

compiled

Main Deployment Scenarios

Stand-alone, integrated rapid composition
environment based on Eclipse user experience

Client/Server: Local RCP monitoring tools connects to
remote runtime execution platform

Runtime execution platform can be deployed on a
cluster of computers. We are developing an
controller to automatically set the optimal cluster
configuration in response to workload changes

autonomic

Rapid Composition of Web Services
with JOpera for Eclipse

Rapid Composition of Web Services
with JOpera for Eclipse

A Flexible Architecture for Autonomic Process Execution

Visual Composition Language Beyond Web Service Composition

http://www.ethz.ch
http://www.iks.inf.ethz.ch

http://www.jopera.org

JOpera offers a visual language
for programming

compositions made
of many kinds of services

JOpera provides a flexible
autonomic platform

for efficiently executing
compositions

Import the WSDL interface of the Web services
Choose a reusable service from the library1

Connect the input and output data of the services
Add integration and adaptation logic using Java snippets2

Run, monitor, test and debug the execution using the same visual language
3

Cesare Pautasso
pautasso@inf.ethz.ch

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)

Zurich, Switzerland

www.jopera.org

Cesare Pautasso
pautasso@inf.ethz.ch

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)

Zurich, Switzerland

www.jopera.org

Invocation
overhead

Fe
a

tu
re

s
Fe

a
tu

re
s

Coarse

Fine

grained

grained

0.001 0.01 0.1 1 10

SOAP/WS

SOAP/A12

SOAP/A11

UNIX

JVM

MSG

JAVA

OPERA

JS

Time (seconds)

T
y

p
e

o
f

S
e

rv
ic

e

Service
Provider

Service
Interface

Service Type
Interface

Input Data Flow Mapping

Output Data Flow Mapping

Failure
Detection

Service
Client

Control Flow
Mapping

User Input Parameters

User Output Parameters

System Input Parameters

System Output Parameters

input outputService InterfaceService Interface

Service
Provider

Service
Invocation

Plugin

Compiled
Process

(Java code)

State
Information

Storage

DispatcherNavigator

Runtime API (Deployment, Startup and Monitoring)

Compiler (Visual to Java)
Background

Model Checker

Visual Refactoring
Autocompletion

Core Composition Model

WSDL/Java Import WSBPEL/BPML Export

Autonomic
Controller

Visual Editing Tools

Visual Monitoring Tools

WSIF

JAVA

SSH
Policy

XPATH

UNIX

SOAP

XSLTHTTP

SQL

ECHO

Event

1

0

23

4

5

67

Queues

Graphical Editing
Framework (GEF)
Graphical Editing
Framework (GEF)

Resources
JDT

Combine efficiently
coarse-grained Web Services

with fine-grained Java Snippets

0

100

200

300

400

500

600

700

0

0

50

50

100

100

150

150

200

200

250

250

300

300

350

350

400

400

450

450

0

1000

2000

3000

4000

5000

6000

0 50 100 150 200 250 300 350 400 450

P
ro

c
e

s
s

Q
u

e
u

e
L

e
n

g
th

Workload Peaks (500 concurrent processes)

E
v
e

n
t

Q
u

e
u

e
L

e
n

g
th

N
o

d
e

s
o

f
th

e
C

lu
s
te

r

Time [s]

0
20
40
60
80

100
120
140
160

0 50 100 150 200 250 300 350 400 450

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450

Processes (1)

Tasks (4)

Navigators
Dispatchers
Idle Nodes

Tasks restarted
Processes migrated

