
JOpera: A Flexible System for Visual Service Composition
Cesare Pautasso

pautasso@inf.ethz.ch

http://www.iks.ethz.ch/jopera

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)

Zurich, Switzerland

http://www.ethz.ch

http://www.iks.inf.ethz.ch
http://www.iks.ethz.ch/jopera

Modeling Service Oriented Architectures
Composition and Components should be modeled orthogonally

JOpera is a visual tool
for modeling and executing

distributed processes
composed out of reusable services.

Visual Composition Language

Composition (or glue) languages model how components (or
services) are connected within an application’s architecture

JOpera provides a visual service composition language

JOpera uses a simple visual syntax based on graphs to model
the interaction between different services as a Process.
The structure of a Process is defined by drawing:

the between parameters of service interfaces
the defining the partial order of service

invocations, branches and exception handling behavior

Main language features

composite services are composable
a composite service can invoke itself

list-based loops and control flow loops
model the interaction with the environment

of interfaces to implementations
of data and interaction style

mismatches can be solved with the same visual syntax
used to compose the services

Services are composed at the level of their interfaces.
Very little assumptions are made about the mechanisms

that are used to access the service implementations.
The JOpera visual composition language is independent of

the mechanisms and protocols involved.

Data Flow
Control Flow

Nesting:
Recursion:
Iteration:
Reflection:
Dynamic late binding
Interface Adaptation

input output

Open Service Meta-Model

A service is an instantiated configured system that is
run by a providing organization. That is, it is fully
grounded. Ultimately, it includes the power supply to
the server machines as well as the organization that
somehow manages to pay the power bill.

(Szyperski, ICSE 2003)

Web Services are one Kind of Service

Composition does not have to be constrained
to a particular type of service
(like coarse grained Web services)

JOpera gives freedom of choice
to pick the most appropriate kind of services in terms of
performance, reliability, security and convenience.

To be invoked a service interface is associated with a type.
A defines:

The describing the information required
to interact with a service using a certain protocol
How to (synchronous or asynchronous)
How to flow (input and output)
A strategy

service type
system parameters

transfer control
map data

failure detection

“

Invocation
overhead

Coarse

Fine

grained

grained

0.001 0.01 0.1 1 10

SOAP/WS

SOAP/A12

SOAP/A11

UNIX

JVM

MSG

JAVA

OPERA

JS

Time (seconds)

Service
Provider

Service
Interface

Service Type
Interface

Input Data Flow Mapping

Output Data Flow Mapping

Failure
Detection

Service
Client

User Input Parameters

User Output Parameters

System Input Parameters

System Output Parameters

Rapid Service Composition

Import theWSDL interface of the Web services

symbol

Result

country1country2

Result

Quote
Convert

Connect the data parameters of the services
Add integration and adaptation logic

symbolcurrency

ProcessConvertStockQuote Input

quote

ProcessConvertStockQuote Output

symbol ResultQuote

country1

country2

ResultConvert

usa

a

b

resultMultiply



JOpera: A Flexible System for Visual Service Composition

http://www.ethz.ch

http://www.iks.inf.ethz.ch
http://www.iks.ethz.ch/jopera

Scalable Execution of the Composition

Flexible Kernel ArchitectureCompiler vs. Interpreter

Process-based service composition tools will not gain
widespread acceptance if they cannot deliver

a level of performances comparable to
traditional programming languages.

In JOpera we apply compilation techniques to achieve efficient
execution of the visual language. However, compiling to Java
code is not enough because of the following issues:

Performance Minimize overhead
Persistence Recoverable execution
Scalability High number of concurrent executions
Portability Platform independence
Flexibility Dynamic late binding
Monitoring User can track the progress of the execution

Alternatives for Compiling Processes

1. Stand-Alone Program

2. Plug-in

The JOpera Kernel is a flexible container of compiled processes.
Flexibility is an important aspect:

to interact with an open set of service types
to offer different levels of performance in terms of

reliability and scalability
to be deployed embedded into other systems

(application servers, development environments) or
also run stand-alone.

Main Process Execution Loop

With this architecture,
a minimum of two threads
can run any number of
concurrent processes.

The executes the processes
The invokes the services

They can be replicated across a cluster

Navigator
Dispatcher

JOpera v1.69
Stable release, free download

The Visual Composition Environment runs on Windows 2k/xp
The Compiler and Runtime Kernel require the Java JDK 1.4

coming soon
We are currently porting the Visual Composition Environment
to Eclipse 3.0 with the GEF plugin
The Compiler and the Kernel can be plugged into Eclipse too!

http://www.iks.ethz.ch/jopera/download

JOpera for Eclipse

Compiled Process

Runtime container

Service
Provider

Service
Provider

Service
Provider

Service
Invocation

Adapter

Compiled
Process
Plug-in

State
Information

Storage

DispatcherNavigator

Monitoring API

Runtime library

Operating System

Operating System

Navigation

Service Invocation

Multitasking

Compiled
Process2

Compiled
Process1

Event

1

23

4

5

67

Queues

Compilation to a flexible runtime platform ensures efficiency of the execution

Run, debug and monitor the execution
using the same visual syntax System Requirements

Cesare Pautasso
pautasso@inf.ethz.ch

http://www.iks.ethz.ch/jopera

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)

Zurich, Switzerland

JOpera is a flexible,
open and scalable

platform for efficiently
executing processes


