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Abstract. Virtual laboratories can be characterized by their long-lasting,
large-scale computations, where a collection of heterogeneous tools is in-
tegrated into data processing pipelines. Such virtual experiments are typ-
ically modeled as scientific workflows in order to guarantee their repro-
duceability. In this chapter we present JOpera, one of the first autonomic
infrastructures for managing virtual laboratories. JOpera provides a so-
phisticated Eclipse-based graphical environment to design, monitor and
debug distributed computations at a high level of abstraction. The chap-
ter describes the architecture of the workflow execution environment,
emphasizing its support for the integration of heterogeneous tools and
evaluating its autonomic capabilities, both in terms of reliable execution
(self-healing) and automatic performance optimization (self-tuning).

1 Introduction

More and more scientific disciplines are switching from in vitro to in silico re-
search where natural phenomena are explored using a computer in a virtual
laboratory instead of being observed in the field. On the one hand, this is due to
the fact that the cost of storing observations has become lower than the cost of
making them. On the other hand, scientific workflow tools [15] – such as the one
described in this chapter – have been developed in order to make it easier for
scientist to process and analyze such observations by composing an increasingly
large number of basic analysis and simulation tools.

Although virtual laboratories are typically associated with very large amounts
of data, data processing is even more critical than data management due to the
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sheer computational complexity involved. Given the heterogeneity and complex-
ity of the underlying distributed execution environments and the long duration
of the computations involved, it is not feasible to manually manage the lifecycle
of such virtual experiments. Instead, a virtual laboratory infrastructure should
automate most tasks related to the reliable and reproduceable execution of such
computations. Ideally, a virtual laboratory infrastructure should provide a team
of scientists with support for easily creating and efficiently running virtual ex-
periments. Additionally, virtual laboratories are rarely designed in a top-down
fashion. They typically emerge from a collection of disconnected pieces of data
processing code (e.g., written in Fortran) and glue scripts (e.g., in Perl [1])
that are developed and maintained by individual scientists. Such an ad-hoc ap-
proach leads to systems that are difficult to modify and maintain, cannot be
easily shared among researchers and involves rather primitive and unsystematic
methods for running, monitoring, and steering the computations.

Considering that all of these problems are a major source of inefficiencies,
it becomes clear that an organized way to store and manage information and
meta-information about the entire lifecycle of a virtual experiment is critical
to its success. Thus, not only high level languages and abstractions to define
such computations are needed but also efficient execution tools integrated with
user-friendly management and monitoring environments are required.

In this chapter we focus on how this functionality has been provided in
JOpera [16], an autonomic process support system specifically tailored for virtual
laboratories. The JOpera project has its roots in the BioOpera [5] project and it
has been developed at the Information and Communications Systems Research
Group of ETH Zurich. JOpera extends the Eclipse platform with a graphical
environment where scientists can use a drag, drop and connect programming
metaphor to define distributed computations out of reusable components. The re-
sulting high-level models are then automatically compiled into Java bytecode so
that they can be efficiently executed by the system. In case of virtual laboratories
where a large number of computations are concurrently executed, JOpera can
distribute their execution across a cluster of computers in order to provide the
appropriate level of performance. Moreover, JOpera includes self-management
capabilities, where the distributed engine can automatically determine its opti-
mal configuration based on its current workload. With this, the need for manual
intervention and tuning the system’s performance is greatly reduced.

The rest of this chapter is organized as follows. We discuss in more detail the
problems of virtual laboratories by showing some typical examples in Section 2.
In order to address these challenges, scientific workflow tools such as JOpera offer
a solution based on two aspects. The first one consists of a language targeted
towards modeling virtual experiments at a high level of abstraction (Section 3).
The second one – presented in Section 4 – lies in the middleware infrastructure
supporting the execution of such a language. An evaluation of the autonomic
capabilities of the system is discussed in Section 5 before concluding the chapter
in Section 6.



2 Motivation

This section illustrates the issues scientists running large scale virtual experi-
ments need to cope with. Each example represents a pattern frequently encoun-
tered in a virtual experiment. Each of these patterns has different characteristics
and requires a different type of support from the virtual laboratory infrastruc-
ture.

2.1 Structured computations

A structured computation involves a set of applications that needs to be executed
in a specific order. These applications run on different operating systems and
hardware platforms. They exchange data with each other through a number
of input and output mechanisms (e.g., command line input parameters, input
and output files, web page downloads) This data is produced at different points
in time throughout the computation and may have to be converted between
different formats. Programming such application may prove to be too difficult
for ordinary users, if appropriate high level programming tools are not available.

In addition to design-time support, run-time support is also important. For
instance, considering a distributed environment, manually taking care of routing

Fig. 1. Microarray analysis pipeline: from raw samples to correlated expression
patterns



data from task to task at the right time becomes difficult, time consuming and
error-prone. Thus, data transfers should be automated, not just to improve the
efficiency of the virtual experiment, but also to collect important lineage and
data provenance information. The goal is to automatically log all of the necessary
meta-data in order to support the correct interpretation of the results of a virtual
experiment, i.e., by tracing how this was generated.

An example of this structured computation pattern can be found in the
bioscience domain. Microarray technology is a promising approach to find clues
concerning the function of specific genes in a cell’s metabolism. The idea is to
expose the cell to an artificially created stimulus (also called condition) and
observe the cellular response in terms of the level of activity (or the expression

level) of some genes over time. Development of appropriate computational models
as well as innovation in wet lab equipment have made it possible to move elements
of the microarray processing pipeline into virtual laboratories.

Such a virtual microarray experiment involves a range of data extraction,
transformation and correction steps that need to be performed prior to a complex
statistical analysis of the data. Figure 1 provides a high-level overview of the
procedure, which is described in more detail in [3]. This microarray processing
pipeline was implemented with BioOpera by integrating existing, standalone,
publicly available software packages written in different programming languages
and maintained by different reseach groups [5].

2.2 Embarrassingly parallel computations

Whereas the main challenge of the Microarray analysis pipeline concerns the
specification of the complex interactions between a large set of heterogeneous
tools, in this section we deal with the evolution of the execution environment
when running long-lived computations.

An embarrassingly parallel computation consists of a set of tasks that can be
processed independently of each other. This kind of computations are commonly
used in a virtual laboratory setting as, given enough execution capacity, their
execution time can be reduced by executing all tasks in parallel. However, when
such a pattern is implemented without appropriate support from the virtual lab-
oratory infrastructure, several challenges become apparent. For instance, choices
need to be made concerning the granularity of the tasks, how to schedule tasks
to run on the available resources (e.g., whether several tasks can share a single
processor), and finally, how to handle the failure of individual tasks. Without
appropriate support, the onus for such chores lies on the user. Not surprisingly,
manually and painstakingly maintaining such computation becomes the domi-
nant factor in the overall cost of performing such virtual experiments and does
not scale to a large number of tasks running on a large number of computers.

An example of this kind of computation is a sequence alignment, a problem
that lies at the heart of comparative genomics. Given an unknown set of nucleo
or peptide sequences, the initial step into any inquiry concerning the evolution,
structure, and function (e.g., [8,9,20]) of these biomolecules consists of the cross-

comparison of each sequence in this set against every sequence of a reference data



set such as Swiss-Prot [6] - an All vs. All, if the two data sets coincide. Typically,
a single comparison requires seconds of CPU time, depending on the method that
is being used and the length of the sequences being compared, and that the total
number of pairwise sequence comparisons is in the order of billions. From this,
several years of CPU time are required to perform the whole experiment. Being
composed out of a number of pairwise sequence comparisons independent of each
other, an All vs. All is embarrassingly easy to parallelize: each alignment can be
computed independently.

Ample details concerning a month-long lifecycle of running such a computa-
tion with BioOpera can be found in [4]. Throughout the computation, processor
availability has been subject to substantial unexpected and uncontrolled fluctu-
ation. Without load balancing or job migration across machines to compensate
for resource failures, utilization of the overall available computing resources is
bound to be suboptimal. Also, a failure of the node coordinating the computa-
tion halts the entire computation. Dealing with these issues manually is indeed
inefficient and time consuming. If a computation environment made out of hun-
dreds of hosts is considered, it is clear that all of the previously described aspects
of its execution should be controlled automatically.

2.3 Parameter-sweep computations

This pattern represents a combination of the ones discussed in the previous two
sections. A parameter sweep computation [2] consists of applying the same al-
gorithm to all parameter value combinations in a predefined parameter space.
Since each each parameter combination can be typically processed independently,
parameter sweeps are embarassingly parallel and share the requirements for a
reliable and distributed execution environment. Concerning structured computa-
tions, not only a complex computation is applied to each parameter combination
but also traceability needs to be guaranteed (i.e., in order to correlate which re-
sults have been produced by which input parameter values).

An example parameter sweep application to which JOpera has been suc-
cessfully applied involved the simulation of protocols for wireless ad-hoc net-
works [21]. Communication partners in such networks are in motion with respect
to each other and may leave and join the network at any time. Additionally, the
network is infrastructureless. Unlike in mobile telephony, for instance, there is
no fixed infrastructure that keeps track of nodes and routes data from sender
to receiver. Data is directly routed through the mobile nodes and routing paths
have to be recomputed as nodes move in and out of transmission range.

The objective of the experiment described here is to compare the simulated
behavior of a set of resource reservation protocols under certain assumptions
like congestion, network latency or node population distribution. In order to
gain a complete understanding of the problem, this parameter space should be
explored in its entirety. Although an individual simulation is on average relatively
short, on the order of 20 seconds of CPU time, the size of the parameter space
makes running the entire simulation challenging. Each simulation depends on
17 parameters, resulting in around 1.5 million independent simulations. Again,



parallel execution on a cluster of computers is mandatory to ensure that the
results are delivered in a reasonable amount of time.

2.4 Discussion

From the previous examples it is clear that a virtual laboratory infrastructure
needs to cope with a variety of design-time and run-time problems. These in-
volve providing good abstractions to model the structure of computations that
are built by integrating heterogeneous scientific tools. However, modeling is not
enough, as computations need to be reliably and efficiently executed in a dis-
tributed (and failure-prone) environment. The main features of such a virtual
laboratory infrastructure can be categorized as follows:

Modeling An easy to use, intuitive programming environment should be pro-
vided so that scientific computations can be specified at a high level of ab-
straction by fostering the reuse of existing tools.

Integration Virtual laboratories must cope with heterogeneity, not only re-
garding data formats but also concerning the environments on which analysis
tools are executed.

Distribution Distribution is another property of virtual laboratories, as local
and remote (e.g., Web-based) data sources and tools have to be accessed.

Steering In addition to reporting their status and progress, long-running com-
putations require support for interacting with them in order to proactively
steer their execution.

Scalability In this context, the notion of scalability needs to be extended to
encompass the virtual laboratory infrastructure itself, which should scale to
handle a very large number of virtual experiments.

Fault Tolerance Given that most of today’s Grid and cluster environments
are failure prone, various failure masking and exception handling approaches
should be in place in order to minimize the number of troubleshooting ac-
tivities to be performed.

Combining all of these features and mechanisms with the appropriate self-
management strategies yields an autonomic infrastructure for managing virtual
laboratories as we are going to describe in the following sections.

3 Modeling Virtual Experiments with Processes

A language for modeling virtual experiments should allow scientists to model all
aspects of a virtual laboratory (e.g., which tools to use, what are their depen-
dencies, how to invoke them, where the data should be stored) in a well-defined,
formalized way so that these experiments can not only be executed in a fully
automatic fashion but the management of related metadata is also automated.

Thus, the main challenge in designing such a language lies in keeping the
balance between two extremes. On the one hand, a risk lies in abstracting away



too many details – e.g., like the data flow, typically disregarded in many busi-
ness process modeling languages – that are of primary importance for modeling
executable scientific computations. On the other hand, a lower-bound is defined
by traditional scripting languages (e.g., Perl or Python). These languages can
also be used as the glue to patch together and run virtual experiments. However,
they lack the necessary abstractions to deal with issues such as reuse of scien-
tific tools and algorithms, scalable, reliable and persistent execution, simplified
orchestration of distributed components, interactive monitoring and steering of
computations as well as tracking lineage and data provenance meta-data.

In the following, we give an overview about the abstractions provided by
JOpera’s languages (Processes and Programs) and how they fit together (Binding
and Flow).

3.1 Modeling the flow with processes

Processes can be seen as an executable blueprint of a distributed application built
using a pipe-and-filter architectural style [7]. Processes model computations as a
combination of heterogeneous tools which are to be executed as the computation
goes through its various stages. Processes can be run once over a certain input
dataset, or can also be applied over a range of input parameter values.

In JOpera, processes model the interactions between a set of programs. A
JOpera process consists of a set of tasks linked by data and control flow de-
pendencies. Tasks represent each step of the computation to be carried out.
Executing a task involves the invocation of an external program or the call of
another sub-process.

Both the data and the control flow of a process can be formally described
as a graph. The edges of the control flow graph link the tasks of a process and
define their partial order of execution. These edges can be labeled with boolean
expressions in order to select upon which condition they are activated and thus
provide support for adding alternative or multiple branches, loops and synchro-
nization points in the control flow. The data flow edges link data parameters of
tasks declaring how information is transferred from one program to the next.
Processes also have input and output parameters, so that it is possible to pass
information to a process when starting it and retrieving its results when it is
completed. Data flow and control flow are related since tasks consuming data
cannot be started before all tasks producing the required data have successfully
completed their execution. Thus, when executing a process, JOpera analyzes
its structure and concurrently schedules all tasks that are found to be indepen-
dent. If enough computing resources are available, these tasks will be executed
concurrently.

Traditionally, workflow management tools have used a visual syntax to graph-
ically depict the flow linking the various scientific tools together into a process.
This is also the approach followed in JOpera with its JOpera Visual Composition
Language (JVCL). With it, both the control flow and data flow of a process can
be specified using a very simple, graph-based visual notation. Nevertheless, the



JOpera visual composition language supports advanced constructs (e.g., itera-
tion, streaming, reflection, recursion, nesting, or dynamic late binding) without
resorting to ad-hoc (and difficult to interpret) extensions of the visual syntax.
We refer the reader to [18] for an in-depth presentation of the JVCL language.

3.2 Binding processes with programs

The notion of binding in JOpera defines the flexible relationship between pro-
cesses (i.e., the compositions) and programs (i.e., the components). Although
processes model how a virtual experiment is composed out of a set of programs,
the description of the programs themselves is kept – by design – separate from
the processes. This separation has several advantages. It enhances the reusability
of the programs, which can be shared among different processes. Likewise, the
same process can be reused by binding it with different programs.

More precisely, a binding defines what are the constraints to be satisfied
by a program in order to be included in a process [19]. Such a binding can be
evaluated along the entire lifecycle of a process: at design-time (early binding), at
compilation-time, at deployment-time, at run-time (late and very late binding).

Given the goal of supporting an open and heterogeneous set of programs,
JOpera makes very little assumptions about the mechanisms that are used to
invoke their functionality. Instead JOpera provides a meta-library of component
types that can be used to define programs. Programs wrap existing tools employ-
ing the most appropriate invocation mechanism both in terms of performance
but also development convenience [17]. Proof of the openness of the JOpera ser-
vice meta-model is provided in Table 1 where all currently supported component
types are listed. Depending on the relevant aspects that should be taken into
account when designing a virtual experiment, these components can be classified
along the following dimensions:

Granularity Both fine-grained (e.g., Java snippets) and coarse-grained (e.g.,
Web services) programs are supported by JOpera within a single process.
Furthermore, the overhead of invoking each component type is proportional
to its granularity. In other words, JOpera can leverage the standardized
(but relatively inefficient) SOAP protocol without being constrained by it.
If necessary, more efficient invocation mechanisms can still be selected to
access fine-grained programs.

Local vs. Remote invocation At run-time, programs can be separated from
a process by an increasingly large distance. For example, Java methods are
invoked by a thread running within the same Java virtual machine where
the process is running. Legacy UNIX applications invoked through the lo-
cal operating system shell run in a separate operating system process with
respect to the one running the JOpera process. Additionally, programs can
represent the execution of an application on a remote host through a secure
shell connection and, going even further away, jobs submitted to a resource
management and scheduling system (e.g., Condor [14] or Globus [10]) to be
executed on a cluster of computers in a remote Grid environment.



Component Type Description

Local Computation
UNIX Application (UNIX) Execute a command line through the local oper-

ating system
Java Method (JAVA) Call a local Java method
Java Snippet (JAVA.SNIPPET) Embed a Java snippet into the process

Remote Computation
Java Remote
Method

(JAVA.RMI) Invoke a remote Java method

Web Service (SOAP) Web service call (using raw SOAP messages)
Web Service (WSIF) Web service call (using the WSIF framework [13])
Secure Shell (SSH) Execute a remote command through a secure shell

connection

Data Transfer
Web Page (HTTP) Download (or upload) a page from a web site
Secure Copy (SCP) Transfer a file with secure copy

Database
Database Query (SQL) Send any SQL statement to a JDBC compliant

database
Telegraph Query (TELEGRAPH) Subscribe to a telegraph stream described by an

SQL query

XML transformation
X-Path Query (XPATH) Query an XML document with X-Path
Style Sheet Trans-
formation

(XSLT) Transform an XML document with an XSL trans-
formation

Cluster/Grid computing
Globus [10] (GLOBUS) Submit a job to a grid managed by Globus
Condor [14] (CONDOR) Submit a job to a cluster managed by Condor

Internal
JOpera Echo (ECHO) Echo a message back
JOpera Process (OPERA) Spawn another process
JOpera API (API) Call the API of JOpera

Human-oriented
Workflow task (WF) Add a new activity to a user’s worklist

Table 1. Summary of the component types currently supported by JOpera



Data-driven vs. Computation-oriented In addition to computations, pro-
grams can also be used to manage the data that is required and produced by
other programs. Data-driven programs are used to model data transfers (e.g.,
file-staging through secure copy or GridFTP), access to persistent storage
(e.g., SQL database queries), and can play the role of mediators and adapters
(e.g., Java snippets or XML data transformations written in XPath, XSLT,
or XQuery).

Interaction Style In addition to synchronous (RPC-style) interactions, where
a program models the complete invocation of an external tool, we have also
applied JOpera’s meta-model to provide support for asynchronous interac-
tions, where the execution of a program involves a one-way message exchange
or the start (or termination) of an independently running application. In this
case, data exchanges between the process and the program can occur at any
time, i.e., when the program is started (input), after it has completed (out-
put) but also during its execution (streaming).

Machine-bound vs. Human-oriented Although most computational tools
are usually meant to be executed in non-interactive mode, parts of a process
may also explicitly include a task requiring some form of human interven-
tion, e.g., to validate partial results and steer the process accordingly or take
some manual corrective actions before the computation is carried on.

Data vs. Metadata Reflection and introspection are also two important fea-
tures of JOpera’s visual composition language. With these it becomes pos-
sible, e.g., to control the execution of a process from another process, or to
dynamically discover properties about the execution environment and use
this information from within a process. For example, it is possible to dy-
namically detect how many resources are available and partition a dataset
accordingly or measure the invocation time of a remote Web service to detect
whether a service-level agreement has been violated.

Additional component types can be easily added to JOpera by plugging a
service invocation adapter into the corresponding extension point, as we are
going to show in the next section.

4 An Autonomic Infrastructure for Virtual Laboratories

The architecture of JOpera is composed of a set of Eclipse plug-ins (Figure 2).
Following Eclipse’s design guidelines, we have separated plug-ins responsible for
the user interface (UI) from plug-ins that work with the internal process data
model. Along an orthogonal dimension, we have also separated the design-time
from the run-time functionality, so that, if necessary, the system can be deployed
in a partial configuration (e.g., where only the run-time monitoring features are
enabled). The compiler, which links the design-time to the run-time part has
been developed in its own plug-in. On the run-time side, the run-time kernel
provides the basic process execution infrastructure used by the compiled code.
It is extended by the service invocation adapters plug-ins, which implement the
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Fig. 2. JOpera is built as a set of Eclipse plugins

mechanisms and provide support for the protocols used to invoke the various
kinds of components that were described in the previous section. Finally, the API
wrappers are used to expose the functionality of the kernel to clients supporting
a variety of protocols.

4.1 Design-time tools

The JVCL model core plug-in contains the functionality used at design-time to
manage the information about programs and processes described in the JOpera
Visual Composition Language. This includes the ability of internalizing such
information loading it from an XML serialization. This plug-in also manages
an object-oriented in-memory model of the processes and programs which has
been automatically produced from the corresponding schema using a generative
programming approach. Clients observing the model may use its event notifi-
cation facilities to be notified when parts of the model are changed, e.g., to
perform some incremental validation or to update the information displayed by
the corresponding UI views. This way, after each modification, the model is
checked incrementally for consistency with respect to various consistency crite-
ria. In case a violation is detected, a specific problem (or a warning) marker is
attached to the part of the model that triggered it. Such verification happens in
the background, without user intervention so that errors and potential problems
are reported immediately. In an agile development environment, such immediate
feedback is nowadays taken for granted as it contributes to reducing the overhead
of the typical compose-compile-fix development cycle and it is very important
to decrease the slope of the environment’s learning curve.

The editor UI plug-in contains the user-interface code that presents the con-
tent of the currently open processes to the developer. We use two different kinds



Fig. 3. JOpera: Design-time Editor and Background Model Checker

Fig. 4. JOpera: Run-time Process Monitor and Debugger

of visual user interfaces to display and edit the structure of a process. List-based
forms are used to choose the services to be composed and to define their interface
parameters. Additionally, the control flow and data flow graphs of the processes
are edited in a visual environment. Such visual editor is implemented by extend-
ing the Graphical Editing Framework (GEF) of Eclipse to use the visual syntax
of the JVCL language. In addition to providing a new kind of editor, the UI
plug-in reuses the existing Outline, Problems and Property views of Eclipse to
display the structure of the active composition, its current error and warning
markers and the attributes of its selected graph elements (Figure 3).
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4.2 Run-time tools

Following a model-driven approach and by leveraging Eclipse’s incremental re-
source builders, JOpera’s JVCLtoJava compiler plug-in incrementally recompiles
the modified composition to Java executable code whenever a process is saved.
This Java code is then once more compiled by Eclipse’s integrated Java compiler
into bytecode. The latter is then automatically and transparently re-deployed
for execution by dynamically loading it into JOpera’s run-time execution kernel.

At this point, a valid, compiled composition is ready to be executed. Unlike
most current model-driven environments, the progress of the execution can be
followed interactively in the same environment – and most important – using
the same visual syntax that was used to define it. Thus, not only JOpera fea-
tures a so-called reverse model transformation, where the original visual process
definition is extracted back from the compiled bytecode, but is also able to join
this with the current state of the execution. This way, the visual representation
is augmented at run-time with color-coded information representing the state of
the execution of each of the service invocations (e.g., white for not yet executed,
yellow for active, blue for finished, red representing a failure). Using the tools
provided by the debugging UI plug-in (Figure 4), individual data parameters can
be inspected, so that – for example, in case a Web service is involved – the actual
SOAP request and response messages can be displayed for debugging purposes.
Similarly, in case a remote execution fails it is possible to distinguish whether
the remote host could not be reached from the actual failure of the execution.
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The persistent state of the execution and the navigation over the control flow
graph of the process are managed by the JOpera Process Execution Engine. Fig-
ure 5 shows its various interfaces, towards clients used to access the functionality
of processes and towards the local or remote programs invoked from a process.
Processes are executed by the engine’s run-time kernel, which delegates the in-
teraction with different component types to a set of service invocation adapters.
Its API can be accessed using a variety of means so that processes deployed
in the kernel are automatically published, e.g., as Web and Grid services [12].
In this regard, JOpera can be seen as an open platform for heterogeneous ser-
vice composition since it is possible to extend the kinds of services that can be
composed by adding user-defined service invocation plug-ins.

In order to handle large workloads, the run-time kernel can be distributed
on a cluster of computers as shown in Figure 6. Processes submitted by clients
for execution are stored into a central queue so that they can be scheduled for
execution on a node of the kernel having enough free capacity. As we are going
to discuss in the next section, depending on the number and characteristics of
the processes to be executed, one node of the cluster may not provide sufficient
execution capacity. In this case, additional nodes can be dynamically allocated
to the kernel by the autonomic manager component [11].

5 Evaluation

In this section we present some experimental results on the autonomic capabili-
ties of JOpera. They validate the architecture of the system and show that it is
possible to automatically deal with a significant set of failures and, in general,
changes in the execution environment (self-healing) but also react to changes in
the workload to be executed (self-configuration).
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5.1 Self-Healing capabilities

Dealing with outages in the execution cluster In this experiment we
tested the system’s ability to cope with changes in the resource set allocated
to the execution of the All vs. All process using a reduced input data set. The
workload consisted of 256 independent jobs, each requiring an average CPU time
of 4 minutes.

Figure 7 shows a trace of the experiment execution using the distributed
engine. The y-axis measures both the number of processors in the cluster as well
as the number of jobs (each job is allocated to one processor). The dashed line
represents the number of available processors. At time t, the Total line indicates
the number of jobs running in the cluster. The Rescheduled Jobs line indicates
how many jobs at a future point in time are going to be rescheduled due to a
failure of the node where they have been running. Thus, the area under this line
represent the amount of CPU time lost due to failures.

In general, Figure 7 demonstrates the ability of the kernel to adapt a running
computation to the set of available processors, which has shrunk and grown
many times throughout the experiment. The kernel is able to take advantage of
new machines by immediately scheduling jobs on them and to reschedule lost
jobs. Automatic rescheduling can be observed whenever a processor fails: the
availability line drops since less processors are available for the computation.
Upon such event, the kernel immediately retracts the jobs running on the failed
processors to reschedule them on another node. In the graph, this is shown by
the Rescheduled Jobs line closely following the number of available processors.
Since a copy of the input data used by a task is stored persistently by the kernel
as part of the state of the process execution, lost jobs can be recovered by sending
a copy of such input data to another processor.



Kernel recovery Recovery of the kernel ensures that process execution resumes
in a consistent state after a failure has interrupted the kernel’s normal operation.
In order to determine the overhead of such recovery, we measured the time taken
by the various recovery steps:

1. Re-loading process instance state information from persistent storage;

2. Navigating through them in order to determine what are the tasks to be
recovered;

3. Synchronizing the state of the tasks which are remotely executed.

The results of Figure 8 clearly indicate that the recovery times grow linearly
with the number of tasks that were active at the time of the failure. More
specifically, the most expensive operation is the loading of the instance data
from the database, which takes 5 milliseconds when there are no tasks to be
recovered, up to 50 seconds when loading 40 process instances composed of 100
tasks each. Since navigation is performed in main memory it is two orders of
magnitude faster: less than 0.4 seconds for 4000 tasks. Synchronization with
the cluster nodes is the step presenting the most time variability. This can be
explained by the fact that when a recovering kernel attempts to contact a remote
node to find out about the state of the task being recovered, it blocks either until
the remote node responds or until the connection times out, which is the case
if the remote node has failed. In addition to this timeout penalty all jobs lost
due to node failures are automatically rescheduled adding to the duration of the
recovery procedure.
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Fig. 8. Overhead of recovering a run-time kernel from persistent state
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Fig. 9. Impact of replicating the kernel over a cluster

5.2 Self-configuration capabilities

Whereas the previous section described the self-healing capabilities of the sys-
tem, where the kernel can survive failures of the underlying cluster environment,
in this section we explore how the kernel can automatically adapt its configu-
ration to optimally use the available resources. First, we show that the kernel
can be replicated in order to service a given workload with better performance.
Second, we show that the kernel, through its autonomic manager, can automati-
cally determine a suitable degree of replication for a given workload. To this end,
we have been analyzing the effect of a replication strategy where up to 7 copies
of the kernel are employed to run the parameter-sweep experiment described in
Section 2.3. The process uses from 200 up to 1000 concurrent tasks to computer
over an increasingly larger input dataset.

Figure 9 shows the results for the static replication strategy, where the num-
ber of replicas (x-axis) of the kernel has been manually configured to study the
effect of replication on the process turnaround time (y-axis). Overall, replication
has a beneficial impact on turnaround time. The system scales well, as a 5-fold
increase in workload can be handled with constant time by a 7-fold increase in
the number of kernel replicas. Still, for smaller workloads, it is not necessary
to fully replicate the execution environment, as – due to Amdahl’s law – the
speedup is limited, as it can be observed for the smallest workload (200 tasks),
where no improvement can be observed after 2 kernels have been used.
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Fig. 10. Automatically adapting the number of replicas

With this, a trade-off can be identified between minimizing the turnaround
time of the processes while optimally using the available resources. Due to the
potential variability of the workloads, especially if a virtual experiment has been
made accessible through a Web service interface, it is important that the process
execution infrastructure is capable of automatically adjusting its configuration
in response to the current workload.

Self-configuration can be achieved through an autonomic manager, which
automatically adapts the degree of replication of the system to fit a specific
workload. This component consists of 1) a basic resource manager, which keeps
track of the nodes that can be used to run replicas of the kernel; 2) a performance
monitoring component that observes the state of the system at regular intervals,
detects imbalances and uses the 3) kernel reconfiguration services, to modify the
number of replicas without disrupting normal system operation.

More precisely, the manager observes the aggregate number of tasks waiting
to be executed by each replica as well as the number of processes waiting to be
executed in the central queue (Figure 6). This value gives an indication of the
backlog of the system and if it exceeds a configurable threshold, a new replica is
added to the system. Conversely, if this value falls below a threshold, the replica
with the least amount of work is disabled and shut down.

Figure 10 illustrates the manager’s decisions by indicating when a worker has
been added or removed from the computation. The x-axis shows the turnaround
time, the y-axis the number of replicas involved in the computation (at least one



replica is kept active at all times) and the z-axis represents different workload
sizes, going from 200 tasks up to 1000 tasks.

These results show the capability of the autonomic manager to adapt the
system to the workload without any human intervention. A limited amount of
replicas was used to execute small workloads, whereas an increasingly larger
number of replicas was used as the workload size increased. On the one hand,
clients benefit from this adaptation as it keeps turnaround times low and stable
in spite of different workloads. On the other hand, the virtual laboratory infras-
tructure can automatically adjust the amount of resources dedicated to execute
the client’s processes.

6 Conclusion

The paradigm shift from in-vitro to in-silico research, observed in many scientific
disciplines, has resulted in the challenge of building virtual laboratory platforms.
While early virtual laboratories consisted of a few applications integrated on the
user interface level (e.g. in a browser), today’s virtual laboratory environments
evolved into a workbench supporting teams of scientists in specifying, running,
monitoring and evaluating virtual experiments. Crucial to the success of such
platforms is its ability to automate all aspects of a computation to the largest
degree in order to make large scale computations manageable.

To this end, in this chapter we have presented the JOpera system, which
brings autonomic computing techniques to meet the requirements of virtual lab-
oratories. With it, all components (computing nodes, software tools, middleware
infrastructure) that deal with the specification and the execution of a virtual
experiment can be integrated using an autonomic platform. This platform com-
bines appropriate mechanisms and strategies to 1) raise the level of abstraction
at which virtual experiments can be defined, executed and debugged; 2) mask
the complexity of dealing with outages in a distributed execution environment
and 3) automatically tune the system’s configuration for optimal performance.
All in all, thanks to its autonomic computing features, JOpera is a significant
step towards the goal of providing scientists with an environment that lets them
concentrate on doing science while avoiding to deal with the computer science.
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