
25 October 2005

Executable Modeling of Generic Service Compositions with JOpera
Cesare Pautasso

Department of Computer Science, ETH Zurich, Switzerland
pautasso@inf.ethz.ch – www.jopera.org

© Cesare Pautasso | www.jopera.org

225 October 2005 Cesare Pautasso | www.jopera.org

How to model composition

Time

Space

Service
Oriented

Architectures Component
Based

Software
Engineering

325 October 2005 Cesare Pautasso | www.jopera.org

Goal: Executable Service Composition
1. Design a simple workflow language

for rapid composition of generic services
2. Build a user-friendly,

efficient and
autonomic system to execute it

3. Ensure their independence from the actual
mechanisms and protocols involved
(there are lots of standards and they change all the time)

425 October 2005 Cesare Pautasso | www.jopera.org

About JOpera for Eclipse
1. Modeling service composition as workflow

• Graph-based, functional workflow modeling
language (Visual syntax, XML under the hood)

• Workflows not limited to Web/Grid services
2. Execution of the workflow models

 Extensibility (Eclipse plug-ins to provide custom
adapters for service invocation & publishing)

 Distributed engine (on a cluster of computers)
 Autonomic engine (self-healing, self-tuning)
 Efficiency (optimizing compiler to Java bytecode)

[ICAC, ICW
S 2005]

Modeling Service CompositionsModeling Service Compositions
with JOpera for Eclipsewith JOpera for Eclipse

625 October 2005 Cesare Pautasso | www.jopera.org

Web Services should be
composed using a

visual composition language

725 October 2005 Cesare Pautasso | www.jopera.org

<!-- HelloWorld BPEL Process -->
<process name="HelloWorld"
 targetNamespace="http://samples.cxdn.com" suppressJoinFailure="yes"
xmlns:tns="http://samples.cxdn.com"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 >

 <!-- List of services participating in this BPEL process -->
 <partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information associated
 with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client"
 partnerLinkType="tns:HelloWorld" myRole="HelloWorldService"
partnerRole="HelloWorldRequester"
 />
 </partnerLinks>

 <!-- List of messages and XML documents used as part of this
 BPEL process
 -->
 <variables>
 <!-- Reference to the message passed as input during initiation -->
 <variable name="input"
 messageType="tns:initiateHelloWorldSoapRequest"/>

 <!-- Reference to the message that will be sent back to the
 requestor during callback
 -->
 <variable name="output"
 messageType="tns:onHelloWorldResultSoapRequest"/>
 </variables>

 <!-- Orchestration Logic -->

 <sequence>

 <!-- Receive input from requestor.
 Note: This maps to operation defined in HelloWorld.wsdl
 -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:HelloWorld"
 operation="initiate" variable="input"
 createInstance="yes"/>

 <!-- Generate content of output message based on the content of the
 input message.
 -->
 <assign>
 <copy>
 <from expression="concat('Hello ',bpws:getVariableData('input', 'parameters','//name'))"/>
 <to variable="output" part="parameters" query="/onHelloWorldResult/result"/>
 </copy>
 </assign>

 <!-- Asynchronous callback to the requester.
 Note: the callback location and correlation id is transparently handled
 using WS-addressing.
 -->
 <invoke name="replyOutput"
 partnerLink="client"
 portType="tns:HelloWorldCallback"
 operation="onResult"
 inputVariable="output"
 />
 </sequence>
</process>

print “hello world!”

825 October 2005 Cesare Pautasso | www.jopera.org

Workflow Lifecycle in JOpera for Eclipse
1. Select component services from a library
2. Build a process using a drag, drop and connect

visual environment
3. Run, Test, and Debug the process execution

within the same visual environment
4. Deploy, Manage, Monitor, and Steer the

execution of processes in production
5. Publish the process as Web Service

925 October 2005 Cesare Pautasso | www.jopera.org

Quick Demo Example
 Stock Quote Currency Conversion

Stock
Quote
Price

Service

Currency
Exchange

Rate
Service

?

1025 October 2005 Cesare Pautasso | www.jopera.org

Drag, Drop and Connect

1125 October 2005 Cesare Pautasso | www.jopera.org

Run, Monitor, Steer and Debug

1225 October 2005 Cesare Pautasso | www.jopera.org

Publish as a Web/Grid service
With one mouse click!

[e-Science2005]

1325 October 2005 Cesare Pautasso | www.jopera.org

JOpera Visual Composition Language Overview
 Services are composed using processes, which

define their interactions using two graphs:
 Data Flow  Control Flow

QueryBookPrice

CurrencyConvert

Exception Handler

isbn

price

QueryBookPrice

amount

amountCurrencyConvert

1425 October 2005 Cesare Pautasso | www.jopera.org

JOpera Visual Composition Language Features
 Processes model generic service composition

 Data flow as the primary representation
 Explicit control flow (branch, synchronization,

exception handling, loops, pipeline, workflow patterns)
 SubProcesses: Modularity, Nesting and Recursion
 First order functions

 Map (parallel/sequential/discriminator) and Reduce
 Reflection (introspection)

 Dynamic late binding
 Quality of Service monitoring [JVLC2005]

1525 October 2005 Cesare Pautasso | www.jopera.org

JOpera Rapid Composition Environment
 Drag&Drop&Connect visual metaphor
 Immediate Feedback

 Errors and Warnings are provided while editing
 Execution is monitored within the same language

 Automatic Completion
 Connect to “matching” parameters
 Suggest “matching” services

 Visual Refactoring
 Element Renaming
 Sub-Process extraction and inlining

[VL/HCC2005]

Generic Service CompositionGeneric Service Composition
with JOpera for Eclipsewith JOpera for Eclipse

1725 October 2005 Cesare Pautasso | www.jopera.org

How NOT to deal with heterogeneity
1. Assume that all services to be orchestrated will

conform to one standard
2. Force all existing implementations to be

wrapped to comply with that standard
3. Modify the workflow language to extend its

support to other standards
(See BPEL, BPELJ, BPEL# controversy for an example)

1825 October 2005 Cesare Pautasso | www.jopera.org

Problems of composing only Web Services
 Web Services are coarse-grained
 All existing heterogeneous tools must be wrapped

as a Web Service
 Wrapping imposes both a performance penalty and

additional development & maintenance costs
 The adapter/mediator between mismatching Web

services must also be a Web service
 Web services standards are not stable

1925 October 2005 Cesare Pautasso | www.jopera.org

Service Invocation Overhead (Log-scale)

0.001 0.01 0.1 1 10

SOAP/WS

SOAP/A12

SOAP/A11

PYTHON

JVM

MSG

JAVA

OPERA

JS
C

o
m

p
o

n
e

n
t

ty
p

e

Time (seconds)

2025 October 2005 Cesare Pautasso | www.jopera.org

A Brief History of Interface Description
Languages

CORBA
IDLRPC

IDL

DCOM
MIDL

Java Interfaces

WSDL
1.0

1980s
1990s 2000s

WSDL
2.0GWSDL

2125 October 2005 Cesare Pautasso | www.jopera.org

How to design
a composition language

independent
of the types of services

 to be composed?

2225 October 2005 Cesare Pautasso | www.jopera.org

Generalizing service composition
 How to design a workflow language independent

of the kinds of services to be orchestrated?
1. Separate the description of the process from the

description of how to invoke each of its tasks
2. A process should make minimal assumptions

about its tasks (i.e., data flow signature)
3. Bind tasks to different invocation mechanisms

without affecting the process definition
[VLDB/TES2004]

2325 October 2005 Cesare Pautasso | www.jopera.org

Main advantages
 Freedom of choice for developers:

 Use the most appropriate kind of service in terms of
Access Protocols and Mechanisms, Functionality,
Performance, Reliability, Security, Convenience, Ease of use

 The workflow language is simpler
 Many constructs (e.g., data transformation, synch vs. asynch

invocations, timeouts) can be shifted from the language
definition to the standard library of service types

 The composition language does not change…
 …when the system is extended to support future standards

and new kinds of services

2425 October 2005 Cesare Pautasso | www.jopera.org

Service Types Supported by JOperaService Types Supported by JOpera

Web Services (SOAP, WSIF)

UNIX Commands
Windows

Grid Services (WSRF)

Java snippets
SSH Java methods

SQL Queries (JDBC)
XML Transformations
(XSLT, X-Path)

Web servers
(HTTP/HTML)

JOpera provides an extension-point for
 custom service invocation plugins

Human activities

2525 October 2005 Cesare Pautasso | www.jopera.org

Architecture of JOpera for Eclipse

2625 October 2005 Cesare Pautasso | www.jopera.org

Conclusions
 JOpera is a workflow tool for building distributed

applications made out of heterogeneous parts
 Processes provide high level abstractions for

specifying the behavior of such applications
 JOpera offers a completely open, flexible and

extensible service composition platform
 JOpera currently focuses on manual composition

with some syntax-based automatic tools

2725 October 2005 Cesare Pautasso | www.jopera.org

Outlook & Potential Interactions
 Model checking based on Syntax and Semantics

(more advanced error detection)
 Using syntax and semantics for auto-completion

(make smarter suggestions)
 A service invocation adapter to use WSMX for

Dynamic Service Selection and Binding
 Grounding the planning results to run on the

JOpera engine

2825 October 2005 Cesare Pautasso | www.jopera.org

References
[e-SCIENCE2005] Thomas Heinis, Cesare Pautasso, Oliver Deak,

Gustavo Alonso, Publishing Persistent Grid Computations as WS
Resources, accepted to the 1st IEEE International Conference on e-
Science and Grid Computing (e-Science 2005), Melbourne,
Australia, December 2005.

[ICWS2005] Cesare Pautasso, Thomas Heinis, Gustavo Alonso:
Autonomic Execution of Service Compositions, In: Proc. of the 3rd
International Conference on Web Services (ICWS 2005), Orlando,
Florida, July 2005.

[ICAC2005] Thomas Heinis, Cesare Pautasso, Gustavo Alonso: Design
and Evaluation of an Autonomic Workflow Engine, In: Proc of the
2nd International Conference on Autonomic Computing (ICAC-05),
Seattle, Washington, June 2005.

[JVLC2005] Cesare Pautasso, Gustavo Alonso The JOpera Visual
Composition Language Journal of Visual Languages and
Computing (JVLC), 16(1-2):119-152, 2005

[VLDB/TES2004] Cesare Pautasso, Gustavo Alonso: From Web Service
Composition to Megaprogramming In: Proceedings of the 5th
VLDB Workshop on Technologies for E-Services (TES-04), Toronto,
Canada, August 29-30, 2004.

25 October 2005

More information & download:
www.jopera.org

Available Today

