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Abstract. The REST architectural style is emerging as an alternative
technology platform for the realization of service-oriented architectures.
In this paper, we apply the notion of composition to RESTful services
and derive a set of language features that are required by composition
languages for RESTful services: dynamic late binding, dynamic typing,
content-type negotiation, state inspection, and compliance with the uni-
form interface principle. To show how such requirements can be satisfied
by an existing composition language, we include a case-study using the
JOpera visual composition language. In it, we present how to build a
composite application (DoodleMap) out of some well-known, public and
currently existing RESTful service APIs.

1 Introduction

RESTful services [1,2] are currently perceived as a lightweight mean to enable
point-to-point integration betwen service providers and a large number of clients.
RESTful services are also being more and more used to build so-called mashups,
applications built by composing multiple Web services and Web data sources
into an single, integrated user interface.

Whereas mashups have been positioned as composition done at the user-
interface layer [3], the goal of this paper is to apply the notion composition to
RESTful services independently of the user interface of the resulting application.
Thus, considering the recursive property of software composition1, we argue that
composing a set of RESTful services should result in another RESTful service,
which can later be consumed by the user interface of a mashup application, or
also be invoked by other composite RESTful services.

To study the problem of composing RESTful services, in this paper we apply
the traditional concepts of software composition (i.e., composition languages,
component models, and composition techniques). We do so by presenting a con-
crete application called DoodleMap, built by composing a set of existing and
popular RESTful services (e.g., Yahoo! Local, Doodle, and Google Maps) using
the JOpera Visual Composition Language [5].

The paper makes the following contributions. We first give a definition of
RESTful service composition in terms of the component model and the com-
position techniques implied by the REST architectural style. From these, we
1 “A composition of components should itself be composable” [4].



derive a set of requirements to be satisfied by languages for RESTful service
composition (support for dynamic binding, content-type negotiation, hyperlink
generation, and compliance with the uniform interface principle). To show a
practical example of how these requirements can be addressed with a concrete
composition language, we present a detailed case study. In it, the latest version
of the JOpera visual composition language is used to build a non-trivial, interac-
tive application by means of the composition of existing RESTful service APIs
by well-known Web 2.0 service providers [6]. Whereas the resulting application
can be considered as a mashup, we design it following a layered approach, where
the model of a composite RESTful service is described separately from the user
interface of the application, to foster its reusability. Moreover, the user interface
of the mashup is decoupled from changes in the component services, which only
affect parts of the model of the composite service.

The rest of this paper is structured as follows. We introduce the problem
of RESTful service composition in Sect. 2 and derive a set of requirements for
composition languages applied to REST in Sect. 3. Section 4 introduces the case
study, showing the potential usefulness of applying composition to RESTful
services. The implementation with JOpera is described in the following Sect. 5.
From it, we discuss a few observations on the need for iterative and interactive
composition methodologies in Sect. 6. Related work is presented in Sect. 7, before
we conclude the paper in Sect. 8.

2 RESTful Service Composition

Traditional software composition focused on defining languages, techniques, and
models for building systems out of reusable software components [4]. As soft-
ware components evolved into services [7,8], the notion of composition remained
as one of the core principles of service-oriented computing [9]. With the emer-
gence [10] of a novel abstraction (the resource) as defined by the Representational
State Transfer (REST) architectural style [2], it becomes important to explore
whether composition remains relevant, and how it can be applied to the design
and implementation of application systems made out of – so-called – RESTful
services [1]. The resource abstraction introduced by the Representational State
Transfer (REST) architectural style [2] poses a number of challenges to exist-
ing service composition languages. In this section, while summarizing the main
characteristics of REST (refer also to [1,11] for an introduction), we discuss to
which extent it can be interpreted as a component model. The characteristics of
such component model for RESTful services are then used to enumerate a set
of specific requirements that should be taken into account during the design of
languages for RESTful service composition.

Composing RESTful services amounts to constructing a new resource out of
the state and functionality provided by a set of existing resources (Fig. 1). The
state of the composite resource can be simply computed as a projection over
the state of the component resources. In the more general case, the compos-
ite resource can also maintain its own independent state. This can be used to



cache the state of the components or to augment it with additional information.
State transitions of the composite resource can trigger the interaction with its
component resources, which can also change state.

Resources published by a RESTful service are exposed using a fine-grained
addressing mechanism: the Uniform Resource Identifier (URI [12]). As a con-
sequence, composite RESTful services need to be able to refer to a large and
dynamic collection of URIs, identifying their component resources. This collec-
tion may change over time since, as we are going to show in the example case
study, component resources may be created and deleted during the lifecycle of
the composite resource. Also, following the recursive nature of software com-
position, a composite RESTful service itself may expose a variable number of
resources to its clients.

Resources are manipulated using their CRUD-like2 uniform interface, which
provides a fixed set of four predefined actions to enable clients to: 1) initialize the
state of a new child resource using POST; 2) read the current state of a resource
using GET; 3) update the state of an existing resource (or initialize it if it does
not exist) using PUT; 4) delete the state of a resource using DELETE.

As opposed to the traditional service invocation mechanism implemented
by sending and receiving messages through a bus [13], the uniform interface
introduces a novel composition technique. This technique builds upon the syn-
chronous request-response interaction (similar to a remote procedure call) while
making explicit some important properties of the interaction. On the one hand, it
features explicit support for idempotent and reliable service invocation: GET, PUT,
DELETE requests can be retried an arbitrary number of times without side-effects.
GET is a safe, read-only operation. PUT, and DELETE are idempotent because they
set the resource into a known state: with PUT the new state is given by the client,
with DELETE the state is removed. In case of communication errors, these can
be repeated as many times as necessary. Unsafe interactions (which may cause
side-effects on the server) are explicitly marked with POST and should be dealt
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Fig. 1. A composite RESTful service (C) built out of the composition of two
existing ones (R and S)



with appropriately. On the other hand, the set of possible actions is limited, well
defined, and fixed to the previously described ones. This contributes to estab-
lish loose coupling between the composition and its component resources [14].
Providing explicit support for the uniform interface as a composition technique
is thus important to enhance the reliability and the loose coupling properties of
a composition.

The state of a resource, as it is transferred from and to the client, needs to
be serialized using a standardized format. REST does not restrict the resource
representation to use a specific format. This resource representation can thus be
XML based, but also use other, more lightweight formats (e.g., JSON [15]). The
actual format can be negotiated in order to achieve full interoperability between
clients and resources without putting too many upfront constraints on the data
exchange format understood by both.

REST also prescribes to use hypermedia as the engine of application state.
In other words, resource relationships can be explicitly rendered as hyperlinks
(i.e., pointers to URIs). This way, the representation of the state of a resource
retrieved by a client can contain links that can be used to guide the client to
interact with other, related resources. For example, the response to a query to a
search engine contains a list of links to relevant Web sites. Likewise, a shopping
cart resource can contain links that lead to the check out of the cart and let the
client complete its purchase by following them.

3 RESTful Composition Language Requirements

The following requirements summarize the challenges for a composition language
applied within the “REST component model”. These requirements should be
considered in addition to the ones (e.g., hierarchical aggregation of compositions,
verification and testing of compositions, support for composition evolution and
partial upgrade) that are independent of the properties of the actual component
model [16]. In addition to the features usually found in composition languages,
composition language for RESTful services should explicitly provide:

1. dynamic late binding. Resource URIs to be consumed may only become
known at run time (for example, by following a hyperlink). Also, URIs may
have to be dynamically generated to be sent to clients of the composition.

2. uniform interface support. Resource manipulation with GET, PUT, DELETE,
and POST should be provided as a native composition technique.

3. dynamic typing. Resources can have multiple representation, whose type may
only become known at run-time. Constraints on the expected set of types
could be specified in the composition.

4. content type negotiation. Compositions should be able to negotiate the most
appropriate representation (both with their clients and with their component
services).

5. state inspection. Clients should be able to “bookmark” and interact with the
state of a composition using the hyperlink URIs it provides them.



4 Example Mashup Case Study

As an example practical application of RESTful service composition, in this
section, we present a case study called “DoodleMap”. This is built by composing
the RESTful service APIs of the Yahoo! Local search service and the Doodle
poll service, together with the Google Map widget. Since this composition can
be consumed from a Web browser and it includes an interactive user interface
composing data and widgets of different sources, we can call it a mashup [17].
A screenshot of the composite application user interface is shown in Fig. 2.

The DoodleMap mashup enhances the Doodle poll service (shown in the
bottom frame) to display alternative locations on a map widget. This way, the
poll participants may vote after looking at the location of the meeting places (or
restaurants, hotels, ski resorts, etc.) as they are positioned on a map displayed
above. The most voted location is highlighted on the map. The poll is initialized
with the results of a Yahoo! Local search and is closed once a predefined number
of participants has voted.

The layered architecture of the mashup is shown in Figure 3. The user inter-
face layer runs in a Web browser. It contains a map widget, which is populated
with markers showing the locations of the poll alternatives, placed using the geo-
graphic locations returned by the Yahoo! Local search service. It also contains an
embedded Doodle poll form, which can be directly used to vote on the preferred
locations. A script running in the browser periodically updates the map with
the latest results returned from the Doodle poll. Due to the browser same-origin
security policies, the script may not retrieve this information from the Doodle
API. Instead it has to go through the DoodleMap Poll State Proxy.

The case study illustrates a useful application of RESTful service composi-
tion. Data read from one service resource (Yahoo!) is forwarded to create a new
resource in a different service (Doodle). The state of the poll is visualized on
the user interface widgets and monitored by the mashup, so that the poll can
be closed once it reaches a certain number of participants. The mashup itself is
published as a RESTful service, with two resources (M and P). M is read from
the browser to display a Web page which contains the map and also embeds the
Doodle form. P is used to retrieve the current state of the poll and to periodically
update the map widget to display the latest poll results.

More in detail, the Web page with the user interface is retrieved with a GET
request to the DoodleMap mashup service. To create a new DoodleMap poll, the
mashup resource accepts also POST requests, with the required input information,
such as the parameters of the Yahoo! Local search, the poll title, description,
author, and the expected number of participants. While servicing this request,
the mashup GETs the results of a Yahoo! Local search, and uses them to initialize
a new Doodle poll (with a POST request). The mashup also monitors the state of
the poll (with GET) so that it can cache it for the user interface and can decide
to close the poll (with a PUT request) once the number of participants reaches
a given number. Whereas the exact sequence of these interactions is not visible
from the structural representation of Figure 3, these will become clear as we
describe the implementation in the next Section.



Fig. 2. Screenshot of the DoodleMap example case study

5 JOpera Implementation

The “DoodleMap” mashup has been implemented using the JOpera visual com-
position language. This section describes the composition code in detail. A dis-
cussion on the iterative construction methodology used to produce the compo-
sition starting from the available RESTful services can be found in the next
section.

The JOpera visual composition language provides a graphical notation to
model workflows in terms of control flow dependencies and data flow transfer
graphs [5]. Each node of the graph represents tasks (or basic execution steps) and
their input and output parameters. Tasks can be dynamically bound to specific
service invocation adapters that allow the composition language to be applicable
to a variety of composition techniques [18]. In this paper, we focus on the new
adapters for invoking external RESTful services using the HTTP protocol, as
well as on “glue” adapters to perform local computations used mainly for data
transformation. A large collection of adapters (including support for traditional
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Fig. 3. Layered architecture of the DoodleMap example case study.

WS-* services) is available and more can be easily provided with a plug-in based
extensibility mechanism that does not affect the basic composition language [19].

The JOpera for Eclipse rapid composition environment provides an inte-
grated development tool supporting the entire lifecycle of a service composition.
It features a design perspective, with tools for managing a library of reusable
services, a visual, drag, drop and connect, environment for composing them into
workflows. Workflows are compiled to Java bytecode for efficient execution and
can be incrementally tested and debugged by executing them in the Monitor
perspective. Once workflows are completed, they can be deployed on a remote
execution engine to be published as a reusable service (both accessible using
REST and WS-* interfaces). JOpera can be freely downloaded from [20].

JOpera provides three views over a service composition model: control flow
dependencies, data flow transfers, and service bindings. In the following we de-
scribe each of the views in detail.

5.1 Control-Flow Dependencies

JOpera uses an unstructured, graph-based approach to visualize the partial ex-
ecution order of the tasks of a workflow [21]. Tasks are shown as the nodes of
a graph linked by edges representing control flow dependencies. Dependencies



Fig. 4. DoodleMap: Control Flow Dependency Graph

can fire when tasks reach a given execution state. All but one dependency in
the example in Fig. 4 are triggered by successful task completion. Only the edge
used to close the loop is triggered when the ClosePoll task found at the exit of
the loop is not executed (when the loop exit condition associated with the task
— marked with a ? icon — is not yet satisfied). Multiple incoming edges on a
task indicate a synchronization point in the control flow. The ShowGoogleMap
uses an AND synchronization, as it waits for both predecessors to finish, while
the Wait task uses an OR synchronization in order to be started as the workflow
enters the loop as well as when the loop is repeated.

As shown in Fig. 4, the workflow begins with a GET request to the Yahoo!
Local search service, represented by the GetYahooLocal task. Before the results
of the search can be used in the mashup they are converted to a format that is
suitable to be represented on a Google Map (ConvertY2G) and to be used for
creating a new Doodle poll (ConvertY2D). The two conversion tasks are executed
in parallel since there is no control flow dependency between them. Once the
results have been converted, the execution continues with a POST request on the
Doodle API to create a new poll (PostDoodlePoll). The headers of the response
returned by Doodle are parsed to extract the hyperlink identifying the newly
created poll resource, as well as the authorization key to administer it. Once



this information is available, the ShowGoogleMap task is ready to be executed,
as all the information required to create the user interface of the mashup is
available.

The second part of the workflow is used to monitor the state of the poll
and close it once enough participants have responded. This is done with a loop
of tasks that, Wait a given amount of time, perform a GET request to retrieve
the current state of the poll resource (GetDoodlePoll), and count how many
participants have responded (CountParticipants). The loop is repeated if there
are not enough participants (this condition triggers the edge from the ClosePoll
back to the Wait task). Otherwise, execution continues to the ClosePoll task,
which changes the local copy of the state of the poll, and finally ends after
the PutDoodlePoll task has transferred the modified state back to the Doodle
service.

5.2 Data Flow Transfers

The graph defining how data flows between the various input and output pa-
rameters of the workflow tasks is shown in Fig. 5. JOpera provides a separate
representation of this view over a composition model due to its complexity. This
way, it is possible to visualize the coarse-grained order of execution of tasks sepa-
rately from their fine-grained data exchanges. The two views are not orthogonal,
as a data flow transfer implies a control flow dependency (but not vice-versa).
The JOpera editor helps to keep the two views in synch automatically. Concern-
ing the syntax of the data flow graph, tasks are shown with input and output
parameters floating around them and linked to the task with incoming (input
parameters) and outgoing (output parameters) white-headed edges. Parameters
of tasks are shown in white, while parameters of the adapters bound to tasks are
shown in grey (and labeled with the SYS prefix). Black-headed edges represent a
data transfer operation between output and input parameter of tasks, which is
executed as a task is about to be started. As specified in [5], the data flow graph
may contain loops.

At the top of Fig. 5 the input parameters of the whole workflow are attached
to the shape labeled with DoodleMap. The values of these parameters are set
at the beginning of the workflow execution. The composition workflow can be
executed multiple times with different input parameters. These define a separate
DoodleMap poll, which can have a specific title, description, name of the
author, number of alternative location results for a given query topic within
a U.S. zip code. Part of these parameters are transferred to build the Yahoo!
Local query URI within the GetYahooLocal task. Others are used to initialize the
state of the new poll created by the PostDoodlePoll task. The time parameter
is used to configure the refresh rate of the user interface (represented by the
ShowGoogleMap task) and the same is also used to specify the polling interval of
the workflow loop.

The XML results retrieved from the Yahoo! Local service are stored in the
SYS.page output parameter of the HTTP adapter bound to the GetYahooLocal
task. These results are copied into the SYS.InputXML parameter of the XSLT



Fig. 5. DoodleMap: Data Flow Transfers Graph

adapter bound to the two conversion tasks. The results of the transformations
are stored in the corresponding SYS.Output parameters and are now in a format
more suitable for initializing the options of the new poll and configuring the
locations of the markers to be displayed on the map.

Once the poll has been created, the Doodle API returns a hyperlink to iden-
tify the new poll resource and an access key which needs to be used to administer
the poll. These are found resp. in the Location and x-DoodleKey headers of the
HTTP response. All headers are stored in the SYS.responseheaders output pa-
rameter of the HTTP adapter bound to the PostDoodlePoll task. The following
task ParsePollID is responsible for extracting the values of the two response
headers and storing them in its PollID and DoodleKey output parameters. The
link to the poll resource is sent to three tasks (ShowGoogleMap, GetDoodlePoll,



PutPoll), which use it to display the poll in the user interface, retrieve the cur-
rent state of the poll for monitoring the number of participants, and for updating
the state of the poll once it is closed. Only for the latter task, also the access
key is required.

The data flow between the tasks that make up the monitoring loop is used to
transfer the poll resource XML representation to the CountParticipants task
which is bound to the XPATH adapter and uses a simple XPath query to count the
number of participants. Also, the same XML representation if passed as input to
the ClosePoll task, which toggles the state of the resource from open to closed.
The result is passed to the input SYS.body parameter of the HTTP adapter bound
to the PutPoll task.

In order to implement the visualization of the current state of the poll on
the map, we publish part of the state of the compositions as a resource and
generate a hyperlink referring to it. This is then passed to the ShowGoogleMap
task, which embeds it into the user interface. Once this is loaded into a Web
browser, a script will use the hyperlink to retrieve the necessary data from the
workflow published as a resource and update the map widget. More concretely,
this is realized by identifying the task that stores the required information (in
our case the GetDoodlePoll task, which retrieves the state of the poll resource
and stores it in the mashup) and by connecting its SYS.ID identifier property
to the task which contains the user interface code. This way, once the workflow
is instantiated, the web page produced by the ShowGoogleMap task will contain
a link that can be used to retrieve the state of the poll resource cached in the
workflow.

5.3 Service Bindings

In the following, we open up a few of the tasks of the composition and present
how they are bound to the corresponding service invocation adapter. Depending
on the specific composition technique, each adapter defines a set of input (and
output) parameters, which need to be configured in order to enable the execu-
tion of the task. JOpera provides an open set of predefined adapters that allow
tasks to call: Java snippets, local Java methods, local UNIX programs, remote
SSH commands, human operators, remote WS-* services, and — as we have
anticipated in the previous sections — remote RESTful services through HTTP,
and local XPath queries and XSLT transformations.

The new HTTP adapter models the invocation of a RESTful service with four
parameters: Method, URI, Body, and the optional request headers (headin). For
GET and DELETE requests, the Body is not used. Values for these parameters
can be bound at design-time to constant values, but also be dynamically bound
at run-time to the input parameters of a task with a variable interpolation
mechanism. For example, the URI of the GetYahooLocal poll task is set to the
following URI template:

http://local.yahooapis.com/LocalSearchService/V2/localSearch?
appid=X&query=%query% &zip=%zip% &results=%results%



Table 1. Service Binding Table for the Doodle RESTful service

Task GetDoodlePoll (HTTP adapter)
Method parameter: GET
URI parameter: http://www2.doodle.com/api1/polls/%pollId%

Task PutDoodlePoll (HTTP adapter)
Method parameter: PUT
URI parameter: http://www2.doodle.com/api1/polls/%pollId%
headin parameter: x-DoodleKey:%DoodleKey%

Task PostDoodlePoll (HTTP adapter)
Method parameter: POST
URI parameter: http://www2.doodle.com/api1/polls/
Body parameter:

<?xml version="1.0" encoding="UTF-8"?>

<poll xmlns="http://doodle.com/xsd1">

<type>TEXT</type>

<extensions/>

<hidden>false</hidden>

<levels>2</levels>

<state>OPEN</state>

<title>%title% </title>

<description>%description% </description>

<initiator><name>%name% </name></initiator>

<options>%options% </options>

</poll>

The placeholder labels found between % sign (e.g., %zip% ) will be replaced
with the actual values of the input parameters of the task, before the HTTP
request is performed. A similar approach is used for the other tasks bound to
the HTTP adapter, as summarized in Table 1. In order to update the state of
the poll, the PutDoodlePoll task uses the HTTP request header (headin pa-
rameter) to transfer the authentication key required by the Doodle service. The
PostDoodlePoll task also requires the body parameter to be configured with the
payload of the HTTP POST request (also shown in the Table). The payload con-
sists of an XML document skeleton into which the task input parameter values
are inserted within the corresponding XML elements.

In order to provide the necessary glue between the service invocations, the
composition contains a number of tasks dedicated to perform small (and local)
computations used to transform the data retrieved from one service so that it
can be transferred to the next one. As a composition language, JOpera does not
include any native support for performing such computations. Instead, like [22],
it provides a variety of adapters so that the most suitable data transformation
language can be chosen without polluting the main composition language. In the
example, we use Java snippets (in the ClosePoll and ParsePollID tasks), XSLT
transformations (in the ConvertY2D and ConvertY2G tasks) and one XPath
query in the CountParticipants task. For completeness, Table 2 also includes



Table 2. Service binding table for some of the glue tasks

Task ConvertY2D (XSLT adapter)
InputXSLT parameter:

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0" xmlns:yl="urn:yahoo:lcl">

<xsl:output method="xml" indent="no"/>

<xsl:template match="//yl:Result">

<option><xsl:value-of select="yl:Title/text()"/></option>

</xsl:template>

<xsl:template match="text()"></xsl:template>

</xsl:stylesheet>

Task CountParticipants (XPATH adapter)
InputXpath parameter: count(//ns:participant)
Namespaces parameter: ns:http://doodle.com/xsd1

Task ClosePoll (JAVA.SNIPPET adapter)
Script parameter:

closed = open.replaceAll("<state>OPEN</state>", "<state>CLOSE</state>");

the actual code used to implement a representative task bound to each kind of
adapter.

6 Discussion

Due to the lack of a standardized (and machine-readable) interface descrip-
tion language, composing RESTful service is far from trivial. Even for a simple
mashup application as the one described in the case study, a significant amount
of time and effort needs to be devoted to interpreting the human-oriented docu-
mentation associated with each service. Also, it is difficult to catch minor errors
(e.g., concerning the usage of whitespace in the XML payloads, or the absence
of required parameters in a URI) in the configuration of the service invocation
adapters at compile-time. Instead, the services need to be carefully tested to un-
derstand their behavior and the semantics of their data representation formats.
When errors occur, there is very little debugging information available beyond
the HTTP 40x and 50x status codes returned by the RESTful service.

To alleviate some of these problems, JOpera provides a composition envi-
ronment that supports an iterative methodology for composition development.
Thanks to its interactive debugging and testing tools, JOpera allows developers
to capture and analyze the results of a failed execution within the context of the
original composition design. Thus, the effort to feed back the information about
a service that has been learned from a failed test into an improved composition
is reduced.



To develop the example of the case study, the composition process can start
bottom-up by dragging a pair of services (e.g., Yahoo and Doodle) into the
data flow view of a new workflow and by connecting directly their parameters.
Execution of such composition will fail, as Doodle will reject the data originating
from Yahoo!. Additional “glue” tasks can thus be added to solve the problem
supplying the missing transformation logic. This needs to be developed top-
down [23], using – for example – the data samples collected by JOpera during the
execution of the failed workflows to create test cases. After the glue is completed,
it can be tested with the original services and the composition can be further
extended. The result of this incremental and interactive approach is visible in
the structure of the composition: in the data flow graph shown in Fig. 5 tasks
bound to invoke RESTful services are interleaved with tasks bound to the local
computations used to provide the necessary adaptation.

With respect to the requirements outlined in Sect. 3, we have demonstrated
in the case study that JOpera – extended with the functionality of the HTTP
adapter – provides some degree of support for all of them.

1. dynamic late binding. Through the variable interpolation mechanism used to
form URI strings passed to the HTTP adapter, it is possible to dynamically
select a URI and bind it to a task at run time. This has been used in the
example both to follow a hyperlink returned by a previous service invocation,
as well as to encode parameter values provided by other tasks.

2. uniform interface. The Method parameter of the HTTP adapter complies with
the REST uniform interface principle, as it allows to select one among the
GET, POST, PUT, and DELETE methods used to manipulate a resource.

3. dynamic typing. Similar to variables of scripting languages, also data flow
parameters of a JOpera workflow can store data of any type. Therefore, they
can be used to transfer data of a type that will only become known at run
time.

4. content type negotiation. The HTTP adapter already allows to read any re-
sponse header and write any request header, thus providing low-level support
for content-type negotiation. We plan to make this feature more accessible
in a future version of the adapter.

5. state inspection. By exposing the state of a running workflow instance as
a resource, and by providing a language construct for generating resource
identifiers associated with the tasks of a workflow, we have shown that it
is possible to provide hyperlinks that enable the interaction of clients with
specific parts of the composition. Also, new workflow instances can be started
with a POST request carrying the values of the workflow input parameters.
The corresponding response includes a hyperlink that enables clients to get
the results of the workflow once it has completed as well as to access a subset
of its internal state while it is still running. The workflow state will be kept
until a DELETE request arrives.



7 Related Work

The work presented in this paper can be located at the intersection of three
research areas in which software composition plays a major role: service compo-
sition, mashup development languages and environments, and REST – seen as
an emerging alternative service technology platform [24].

The current standard technology for service composition is represented by
the Web Services Business Process Execution Language (WS-BPEL [25]). As
summarized in Table 3, the statically typed language lacks support for dynamic
late binding to a variable set of URIs, it does not support the composition mecha-
nism provided by the uniform interface, nor it supports content type negotation
or state inspection. In [26], we have proposed a lightweight extension to the
WS-BPEL standard called BPEL for REST to address these limitations. The
extension is based on adding a concrete set of activities for invoking RESTful ser-
vices to the WS-BPEL language so that it can support the missing composition
techniques. In this paper we have explored an alternative approach, where the
original composition language does not require any extension to be applied to a
new component model using a different composition technique. This result vali-
dates some of the original claims associated with the JOpera service composition
language [5], in particular regarding the generality of its service abstraction [19].
Whereas the language had originally been proposed for composing WS-* services
in 2003, this paper presents how the same language can be used to effectively
compose RESTful services in 2009.

REST has been described as the right architectural style to enable serendipi-
tous reuse by means of composition [27]. The idea of RESTful service composition
has also been explored in the Bite project [28], where a simplified version of the
BPEL language targeting REST has been proposed. The Bite language however
only partially addresses the requirements we have identified in Sect. 3, as it lacks
support for content-type negotiation and provides only limited compliance with
the uniform interface principle (PUT is not supported [29]). In [30], the state
transition logic of a RESTful service has been designed using a Petri-net formal-
ism, which could also potentially be used for composition purposes. However,
due to the lack for modeling data flow aspects, it is unclear how Petri-nets could
be used to implement the case study example presented in this paper. The use
of workflow languages for composing RESTful services has also been proposed

Table 3. Service composition languages comparison summary

Requirement WS-BPEL BPEL for REST Bite JOpera

1. dynamic late binding No Yes Yes Yes
2. uniform interface POST only Yes Partial Yes
3. typing Static Dynamic Dynamic Dynamic
4. content type negotation No Yes No Yes
5. state inspection No Yes Yes Yes



in [31], where a tag-based solution to address the state inspection requirement
is proposed.

Mashups are a novel kind of Web application which combine data sources
and Web services of different providers [17,32]. In the past few years, a num-
ber of mashup composition languages and tools have appeared (e.g., Yahoo!
Pipes [33], Microsoft Popfly [34], IBM Swashup [35]) targeting a wide commu-
nity of end-users mashup developers. As we have demonstrated in the case study,
the JOpera visual composition language can also be used to build a similar kind
of applications. In particular JOpera is focused on the integration logic layer of a
mashup, and only provides limited support for building the user interface layer,
where multiple widgets should be composed: in the case study, the construction
of the user interface was “concentrated” within a single task of the workflow.
An example of a complementary composition tool focused at the user interface
layer [3] is Mixup [36].

8 Conclusion

As more and more RESTful services become available [6], the Web is shifting
from an open medium for publishing data to a programmable platform for build-
ing composite applications by means of innovative assembly of existing REST-
ful services and data sources. To enable the vision of a programmable Web,
it is necessary – in addition to the design of composition languages satisfying
the requirements presented in this paper – also to design a suitable toolchain
for building compositions. JOpera represents an example of such a composition
tool, but it is only a first step towards helping developers effectively deal with
the dynamic, flexible, stateful and reflective nature of RESTful services.

To give a concrete perspective on the kind of problems that can be encoun-
tered while composing RESTful services we have presented the DoodleMap case
study, introducing a non-trivial application built out of public and currently
widely used RESTful services. The main limitations of the current approach,
which will need further research to be fully solved, concern how the abstractions
provided by a composition language for RESTful services can be mapped to the
properties of the corresponding runtime environment. In particular, it should be
possible to enhance the reliability of the composition by taking into account the
idempotency associated with some of the uniform interface. This should be done
transparently and should not require any additional programming effort as it
is currently the case. Also, a more declarative approach to provide support for
content type negotiation would raise the level of abstraction of the composition
language. Likewise, further work is needed to deal with state managent, security
and scalability concerns.
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