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Abstract

Whereas a consensus has been reached on defining the
set of workflow patterns for business process modeling lan-
guages, no such patterns exists for workflows applied to sci-
entific computing on the Grid. By looking at different kinds
of parallelism, in this paper we identify a set of workflow
patterns related to parallel and pipelined execution. The
paper presents how these patterns can be represented in
different Grid workflow languages and discusses their im-
plications for the design of the underlying workflow man-
agement and execution infrastructure. A preliminary clas-
sification of these patterns is introduced by surveying how
they are supported by several existing advanced scientific
and Grid workflow languages.

1 Introduction

Scientific and Grid workflow languages [16, 23, 42]
make use of techiques such as massively parallel execution
and pipeline processing [18] to provide scientists with pow-
erful modeling primitives and language constructs. These
primitives are used to implement parallel task execution
while retaining the characteristic high abstraction level of
workflow languages.

For example, the notion of data flow used in scientific
workflows is a natural representation for simple data pro-
cessing pipelines. It has the advantage that parallel execu-
tion of independent tasks is modeled for free [19]. Pure
data flow, however, is not expressive enough to model ei-
ther branches and merges in the execution path nor iterative
behavior [26]. This is why workflow languages typically
focus on the control flow primitives rather than on the data
flow aspects. An example of this focus is the existing lit-
erature on control flow patterns [37]. In scientific applica-
tions, however, data flow [34] and parallel computing pat-

terns play a crucial role, not only in terms of design-time
modeling but also in important performance optimization
aspects related to run-time execution at a large-scale.

In this paper, as a first step to better understand the re-
lationship between parallel computing and scientific work-
flows, we define a set of language patterns. These patterns
can be classified in two broad categories: Parallel Execu-
tion and Pipelined Execution (Table 1). Parallel execution
patterns include: 1) Simple parallelism, where tasks lack-
ing control flow dependencies are executed in parallel; 2)
Data parallelism, a form of single instruction multiple data
(SIMD) parallelism [15] with three variants: static, dynamic
and adaptive. Pipelined execution patterns include: 3) best
effort pipelines, where intermediate results are dropped if
downstream tasks are not ready to process them; 4) block-
ing pipelines, where a form of flow control is used to stop
tasks that are located upstream from busy ones; 5) buffered
pipelines, where the workflow accumulates intermediate re-
sults between tasks; 6) superscalar pipelines, where mul-
tiple parallel instances of slow tasks are started to process
intermediate results; 7) streaming pipelines where interme-
diate results are fed into continuously running tasks.

The purpose of this paper is not just to introduce
these patterns, as most of them have already been fea-
tured in parallel computing languages for a long time (e.g.,
HeNCE [5]). The goal instead is to classify them in such
a way that their practical implications for Grid workflows
rather than for parallel programming languages become
more clear. A first use of these patterns could be to study
and compare the expressive power of existing scientific and
Grid workflow languages. Yet, a more interesting applica-
tion will be to revisit different aspects of the management of
scientific workflows with these parallel computing patterns
in mind.

Thus, supporting these parallel computing patterns in
a workflow system involves dealing with issues related to
their efficient implementation. Parallel and pipelined ex-
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ecution patterns are used to introduce performance opti-
mizations in the workflow [25]. Still, these optimizations
need to be integrated with the rest of the features (e.g., per-
sistent execution, data management, task scheduling, data
provenance, and lineage tracking) provided by a scientific
workflow system. More concretely, partitioning a dataset
a thousand-fold may indeed provide a comparable speedup
in the execution of the workflow. However, the overhead
of collecting and managing the corresponding amount of
metadata should not be underestimated. By making these
parallel computing patterns explicit, we hope to facilitate
the discussion on what needs to be done to implement them
efficiently.

The rest of the paper is structured as follows. For
each group of patterns (Parallel Execution, Section 2, and
Pipelined Execution, Section 3), we include a general de-
scription of its purpose, we present some alternatives on
how it can be modeled (depending on the characteristics of
the scientific workflow language) and sketch some possible
extensions and variations. Given the large number of differ-
ent scientific and Grid workflow languages that have been
proposed in the literature [16, 23, 42], we also discuss to
which extent a set of representative ones supports the pat-
terns introduced in the paper. Section 4 discusses some re-
lated work and Section 5 concludes the paper.

2 Parallel Execution

2.1 Simple Parallelism

Parallel execution is the simplest technique to reduce the
execution time of a scientific workflow. Given a set of tasks,
if there are no dependencies between them and enough Grid
computing resources are available, they can be scheduled
for execution using multiple parallel threads of control.

Most languages based on data flow (e.g., SCIRun [30]
and KEPLER [3]) support this pattern in a straightforward
manner (Figure 1a). The data flow graph of a process ex-
plicitly defines what data is exchanged between tasks. It
can be analyzed to infer the partial order of execution of the
tasks as follows. If a pair of tasks exchange data, they de-
pend on each other and must be executed sequentially, i.e.,
the task producing data as output is followed by the task
requiring it as input. For example, a task writes its results
into a file and the following one can read from the file only
after it has been closed. Likewise, a task can invoke a Web
service only after the response from the previous Web ser-
vice has been received. If a pair of tasks is not linked by
such data dependency, then both tasks can be scheduled for
concurrent execution.

Simple parallel execution can also be expressed using
the control flow. Languages modeling control flow with a
simple directed graph (e.g., YAWL [36], or JOpera [31])
still represent this pattern in an implicit way, where the
lack of control flow dependencies (Figure 1b) between tasks
implies the lack of ordering constraints in the execution.
This is similar to the semantics of some languages (e.g.,
GEL [21]), where simple parallelism is intended as a syn-
onym of lack of dependencies between tasks. As a conse-
quence, the workflow engine has the possibility (but it is not
compelled) to run independent tasks in parallel. Thus, the
actual concern of implementing parallel execution is shifted
to the scheduling system, which can adapt the degree of ac-
tual parallelism based on the available execution resources.

In other cases, simple parallelism is modeled using ad-
hoc control flow constructs, e.g., the parallel split node in
UML Activity Diagrams (Figure 1c), where the flow is still
represented as a directed graph. An example of an hy-
brid approach (where the nodes of the control flow graph
can be nested into blocks) can be found in [40], where
various alternative representations of parallelism are ana-
lyzed for the standard Business Process Modeling Nota-
tion (BPMN [28]). In this case the tasks contained in-
side a parallel box are executed in parallel, only after the
predecessor of the parallel box has completed (Figure 1d).
A final alternative to model the simple parallelism pattern
is taken by languages following a pure block-based ap-
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Figure 1. Alternative representations of the simple parallelism pattern

proach (Figure 1e), e.g., like flow structured activities à
la XLANG/BPEL [27] or parallel blocks like in Kara-
jan [39].

From these examples it can be seen that, in some cases,
modeling parallelism with the control flow requires the
modeler to make an additional effort as parallelism must
be expressed explicitly. Compared to data flow, using the
control flow gives more control over the actual order of task
execution. The advantage is that sometimes it may be re-
quired to actually reduce the amount of parallelism in the
workflow by modeling dependencies between tasks which
are not visible in the data flow of a process. This is not pos-
sible to express in pure data flow languages, unless an ad-
ditional representation of the control flow is included. This
can be overlayed, like in TAVERNA [41], or shown side-by-
side, like in JOpera [31].

2.2 Data Parallelism

Single Program Multiple Data streams (SPMD [18]) is a
parallel processing technique where the same program (or
task, in workflow terminology) is applied to multiple data
elements. All elements are processed in parallel, if – as
before – no dependencies exist among them.

The Data Parallelism pattern applies this idea to speed
up the execution of workflows that are run over large input
datasets. Instead of feeding the entire dataset to a task, the
data is partitioned and a copy of the same task is applied
in parallel over each (independent) partition. Once all data
partitions have been scheduled for execution, there can be
different synchronization semantics to proceed with the ex-
ecution (wait for all, wait for one, n-out-of-m).

The pattern is often used to model embarrassingly paral-
lel computations such as parameter-sweep simulations [1].
This pattern has also a close relationship to the classical
multi-instance workflow pattern [37] and its variations.

Before presenting several examples on how this pattern
can be modeled, we further qualify Data Parallelism by
defining when the degree of parallelism is determined (at
design-time, or at run-time) and by whether it can be con-
trolled from within the workflow itself (manual vs. adap-
tive).

2.2.1 Static vs. Dynamic Data Parallelism

If the number of partitions is known in advance (i.e., at
design-time) and it is fixed for all workflow executions, any
workflow language that supports the simple parallelism pat-
tern can be used to model the static data parallelism pat-
tern [37].

The pattern becomes more challenging to model if the
number of partitions can only be determined at run-time.
This is an important aspect to ensure the portability of a
workflow definition across multiple execution environments
of different sizes [13]. A workflow should not be designed
to run on a specific Grid execution environment. Instead,
key environment properties should be abstracted in a set of
workflow parameters bound as late as possible, i.e., at de-
ployment or at run-time. The degree of partitioning of an
input dataset for a task is one of such parameters. Its value
depends both on the actual size of the dataset and on the
amount of computing resources that are available when the
workflow is executed.

2.2.2 Adaptive Data Parallelism

In the simplest case, the number of partitions can be manu-
ally controlled by passing it as input to the workflow. Alter-
natively it can be automatically estimated during the execu-
tion of the workflow itself.

As a motivation for this pattern, we present the model
shown in Figure 2. This model indicates that the total exe-
cution time of a workflow that uses data parallelism to speed
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Figure 2. Adaptive Data Parallelism: execu-
tion time and speedup with a variable number
of data partitions of the same dataset sched-
uled on a fixed amount of 10 homogeneous
execution resources

up the processing of an input dataset of fixed size, is highly
sensitive to the number of data partitions (d, x-axis) with
respect to the amount of available resources (R = 10). As-
suming a homogeneous set of partitions, for d ≤ R the
speedup increases linearly with d. For d = R +1, however,
the speedup drops almost by 50%. In general, this effect is
most prominent when d = kR + 1 (k > 0). Given that –
in this case – one partition cannot be executed concurrently
with the others, the performance of the workflow suffers due
to the unbalanced use of the available resources. Since the
model assumes that the overhead of scheduling each parti-
tion is negligible, the maximum speedup is reached again
for d = kR (k > 1). For this case, the execution time does
not change with a larger number of partitions because the
size of each partition decreases proportionally.

Considering this staircase effect, in order to ensure the
balanced execution of the workflow, a Grid workflow sys-
tem can provide support for the adaptive data parallelism
pattern. With it, the workflow is dynamically adapted to the
current state of the Grid execution environment [32]. The

optimal number of partitions is determined automatically as
a function of the number of available Grid resources. As an
example, this estimate can be based on the following heuris-
tic: the number of partitions d should be a multiple of the
number of available processors R, so that full resource uti-
lization is ensured by scheduling each partition for parallel
execution.

Modeling such adaptive data partitioning strategy re-
quires a workflow language to support some form of reflec-
tion. Through reflection, the workflow reads information
about the environment to automatically steer its execution
(in the dynamic case) or adapt its structure (in the static
case). This can be further extended by using resource reser-
vation capabilities provided by advanced resource manage-
ment and scheduling systems [10]. By doing this, not only
the optimal data partitioning is determined for a task but the
workflow also ensures that enough resources are reserved to
process the resulting set of tasks.

A further distinction can be made by observing that not
all data partitions need to be of the same size. We can distin-
guish between a homogeneous data partitioning strategy and
a heterogenenous data partitioning strategy. In an heteroge-
nenous execution environment, splitting the data unevenly
may be required to ensure that all tasks run to completion in
the same amount of time [2].

The downside of adaptive data parallelism is that the run-
time structure of a workflow instance is not only influenced
by its input data, but also by the current properties of the
Grid execution environment. This has dear implications for
the workflow engine in terms of maintaining lineage meta-
data and guaranteeing deterministic memoization [22].

2.2.3 Modeling Examples for Data Parallelism

The main challenge of modeling the data parallelism pattern
consists of dealing with a variable number of tasks, whose
number may change for each workflow execution. Differ-
ent languages follow different approaches (Figure 3): 1)
Static and Dynamic Graph Rewriting; 2) First-order func-
tions; 3) Multiple job submissions per task; 4) Repeated
asynchronous job submissions; 5) Parallel for-each blocks.

Graph rewriting is a technique based on the replacement
of a task node with n copies of itself and the necessary
rewiring of the corresponding control and data flow. If this
is applied at design (or deployment) time, like in the case of
Triana [35], this technique is similar to a form of macro ex-
pansion and can only be applied to support the static variant
of this pattern.

In the dynamic case, a vector is passed as input to a task.
At run-time, for each element of the vector, a new instance
of the task will be created and started in parallel. Since the
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number of elements in the vector is known only at run-time,
the number of parallel instances of the task may change for
every execution of the workflow. In case of a task receiving
multiple input vectors, their elements can be joined for each
task instance. This can be done assuming that each vec-
tor has the same number of elements, like, for example, in
JOpera [31]. Alternatively, the latest version of Taverna can
also iterate over the cartesian product of the vectors [41],
which can then have different lengths.

An example of dynamic parallel loops, which however
only models concurrency from the control flow perspective
is presented in Teuta [33]. In this case, UML activities are
stereotyped with the “parallelloop” tag. Furthermore, an
asterisk (“*”) is used to denote the dynamic instantiation of
a variable number of activities. Still, no explicit means of
controlling the number of partitions is presented.

From a syntactical point of view, this approach is simi-
lar to the following one, which does not require to modify
the structure of the workflow to deal with a variable number
of partitions. The idea consists of relaxing the assumption
that each task models the scheduling and the execution of
a single job. If a task can be used to model the batch sub-
mission of a set of jobs to a scheduler, then the workflow
does not need to grow because only one instance of a task
is enough to control the execution of multiple parallel jobs.
Synchronization and retrieval of the results is also simpli-
fied, as the same batch submission facilities of the sched-
uler can be used to retrieve the results of all completed jobs.
As an example, JOpera can perform multiple job submis-
sions to a scheduler within the same task. Experiments have
shown that given a non-neglibible job submission overhead
it pays off to submit a large number of parallel jobs as a
batch within the same task [11].

Languages (e.g., KEPLER [3]) based on data flow can
also use an approach based on functional programming,

where a first-order function (in this case, the list′ =
Map(task, list) function) is used to apply in parallel the
same task (or mapping) over each element of a list passed
as input to the first-order Map function [12].

Languages supporting control flow loops and having the
ability to spawn tasks (i.e., asynchronously submit a task
to a scheduler without waiting for its completion) can com-
bine these two constructs to iterate over an input vector and
spawn a new task over each of its elements. With this solu-
tion, however, given the lack of a specific language con-
struct, synchronization over all submitted tasks becomes
difficult to express [17]. Since all tasks are executed asyn-
chronously with respect to the workflow their results cannot
be easily accessed in order to further process them in the rest
of the workflow.

Block based languages (e.g., the Abstract Grid Work-
flow Language (AGWL) [14]) use a special parallel for or
parallel for-each block to specify that the tasks contained
within the block can be iterated over in parallel. This is
also the case for Karajan [39], where a parallel mode for the
for loop construct is included. A parallel option for the
forEach structured activity is also included in the latest
version of the WS-BPEL 2.0 [27] specification where differ-
ent synchronization strategies can be modeled by customiz-
ing the completion condition associated with the forEach
activity. Similar to the other approaches, the body of the
loop must not depend on results of previous iterations.

A compact notation for modeling the parallel-for block
construct has been described for the Grid Execution Lan-
guage (GEL [21]) as follows:

∑d

x=1
P (x) indicating that

task P is to be executed d times in parallel. GEL pro-
vides explicit support for both static and dynamic data par-
allelism. While the number of iterations of a pfor must be
known at compile-time (static) the number of iterations of a
pforeach can depend on the results of previous tasks or
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on the state of the execution environment (e.g., the number
of files listed in a folder), thus also supporting the dynamic
data parallelism pattern.

3 Pipelined Execution

Whereas using the Data Parallelism pattern can speed up
the execution of one or more tasks applied in parallel to a
vector of input data elements, the Pipelined Execution pat-
tern comes into play when a sequence of more than one
tasks is applied sequentially to a vector of input data ele-
ments.

As opposed to iterative execution, where each data ele-
ment would have to go through the entire sequence of tasks
before the next data element of the vector is processed, with
pipelined execution the elements are streamed through the
workflow. Similar to the previous pattern, the set of input
elements may be known in advance (either at design-time
or before the execution of the pipelined sequence begins)
or new elements may appear while the pipeline is running
(e.g., if a scientific workflow is used to process measure-
ments produced in real-time by a sensor or another source
of streaming data).

Thanks to such overlapped parallel execution, applying
this pattern can reduce the overall execution time of the
workflow by a factor proportional to the length of the se-
quence of pipelined tasks. This result holds assuming a ho-
mogeneous set of tasks and data elements, as well as the

availability of a dedicated computing resource for the re-
peated execution of each task.

From these assumptions stem most of the difficulties in
implementing pipelined execution for a workflow language.
Given the heterogeneity of the tasks involved and the vari-
ability of the input data elements, it cannot be assumed that
all tasks of the pipeline take exactly the same time to pro-
cess their input. Thus, pipeline collisions (when a task sends
data to another task that is busy) can be dealt with at the
level of the workflow, or within its tasks, or by the applica-
tion itself. As shown in Figure 4, the workflow can either
block the execution of tasks, manage buffers between tasks,
or start multiple task instances in parallel. The tasks can as-
sume the role of continously running operators over a data
stream. The application can – in some cases – tolerate loss
of data.

3.1 Best Effort Pipelines

In the simplest case, no guarantees are provided and data
is simply dropped in case of pipeline collisions. This best-
effort solution may be satisfactory where it is not required
that all input elements are fully processed by the pipeline.
For example, real-time constraints on the freshness of the
results to be delivered by the workflow may dictate that
older data elements are dropped if a task is lagging behind.

Best effort pipelines are a pragmatic approach that
greatly simplifies the workflow engine implementation.
However, they require careful handling as the execution is
no longer deterministic and reproduceable.

3.2 Blocking Pipelines

A first solution to avoid loss of data is to block the ex-
ecution of a task of the pipeline if its successor is busy.
More precisely, this involves an inversion of the control
flow between tasks. With blocking semantics, a task can
only be (re)started if the predecessor has completed and if
its successor is idle. This additional constraint ensures that
the data produced by a task will not be overwritten, as the
downstream tasks will be ready to process it. One example
of a system implementing the blocking pipelined execution
pattern are KEPLER and JOpera.

Although blocking already ensures that no data is lost
within the pipeline, slow tasks will recursively block their
predecessors quickly becoming the bottleneck of the en-
tire execution. Another problem concerns the data that is
streamed into the pipeline. This can be either pulled into
the workflow synchronously with the pipeline execution, or
pushed into the workflow at a fixed sampling rate, indepen-
dent of whether the first task of the pipeline is blocked or
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ready to receive it. Only in the latter case, data loss may still
occur as the source of streaming data cannot be blocked.

Both of these issues can be addressed by generalizing
this pattern to use a buffer for storing both the input data
and the intermediate results of the pipeline.

3.3 Buffered Pipelines

Providing buffering semantics requires to store and ac-
cumulate all intermediate results produced by a task in case
the one following it in the pipeline is not yet ready to pro-
cess a new input data element. Examples of languages that
support the buffered pipelines pattern are SCIRun [30], Tri-
ana [35], and KEPLER [3].

There are two main challenges that concern the efficient
implementation of buffering. Although, from a conceptual
point of view, a buffer may effectively decouple a fast pro-
ducer from a slow consumer, a concrete buffer has a limited
(or finite) capacity. Thus, buffering still requires the engine
to block upstream tasks in case the buffer gets full. From
this, it can be seen that this semantics is a good solution for
decoupling tasks whose execution time varies depending on
the particular data element of the stream.

The second challenge concerns the interference of a data
flow related aspect (i.e., the buffer) and the control flow that
defines when a task of the pipeline is ready to be executed.
More specifically, in order to start the execution of a task,
the engine should not just look whether its control flow de-
pendencies are satisfied but also take into account the state
of its data flow buffers.

3.4 SuperScalar Pipelines

Superscalar execution semantics requires to dynamically
create additional task instances whenever they are needed
to avoid collisions. Thus, if a new input data element is
available for a busy task, another instance of the same task is
created in order to process the new data element in parallel.
This is the approach followed by HeNCE [5].

Creating additional task instances opens up the possibilty
of data elements to overtake each other, as some may be de-
layed in the pipeline. Thus, within the pipeline, for each
element synchronization can be enforced between all tasks
(full synchronization), or only at the beginning and at the
end of the pipeline (out of order), thus leaving the engine
the possibility to change the order in which the various ele-
ments are processed by intermediate tasks.

More in detail, in Figure 5 we compare these two alter-
natives with the basic data parallelism pattern (left). With
the synchronized variant (center), dependencies are inserted
both along the direction of the pipeline, but also between all
task instances responsible for processing each data element.
This ensures that all elements are processed in strict sequen-
tial order. In the other case (out of order, Figure 5 right),
dependencies are only inserted where they are needed (i.e.,
at least at the beginning and at the end of the pipeline). This
allows some degree of out-of-order execution, where ele-
ments can overtake one another within the pipeline while
still ensuring the ordering of the final results.

This technique adds considerable complexity to the un-
derlying engine. In addition, it requires very efficient mech-
anisms if the progress of the execution is to be made persis-
tent or to actually display it in a monitoring tool.

3.5 Streaming Pipelines

Adding streaming semantics to a pipeline of tasks re-
quires to relax the basic assumptions of having tasks that
support a simple request-response interaction, where a task
reads its input as it starts and produces output once it is fin-
ished. Given the goal of passing input data to a task as soon
as it is produced by its predecessor (and avoid the block-
ing semantics), the workflow cannot wait for the task to
finish before restarting it with the next element (like with
the buffering semantics) or start another parallel instance
(superscalar semantics). Thus, only if tasks allow a more
flexible interaction based on multiple requests and multiple
responses, the streaming semantics can be fully supported
by a workflow language.

An example of the pipelined workflow pattern with
streaming semantics can be found in the OSIRIS/SE [6],
KEPLER [3] and PTOLEMY [20] systems, as well as in the



Language Simple Parallelism Data Parallelism Pipelining Semantics
Visual Parallel Computing Languages

HeNCE [5] Control Flow Graph Dynamic Superscalar
SCIRun [30] Data Flow Graph Static Buffered

Scientific and Grid Workflow Languages
AGWL [14] Control Flow Dynamic
GEL [21] Control Flow Dynamic
JOpera [31] Data and Control Flow Graph Adaptive Best Effort and Blocking
Karajan [39] Control Flow Dynamic
KEPLER [3] Data Flow Graph Dynamic Streaming, Blocking and Buffered
TAVERNA [41] Data and Control Flow Graph Dynamic
Teuta (UML 1.1) [33] Control Flow Dynamic
Triana [35] Data Flow Static Buffered

Business Process Modeling Languages
BPEL4WS 1.1 Control Flow Block Static
WS-BPEL 2.0 Control Flow Block Dynamic
BPMN [28] Control Flow Dynamic
Osiris/SE [7] Control Flow Static Streaming (with Buffering)
UML 2.0 [29] Control Flow Graph Static Streaming
YAWL [36] Control Flow Graph Dynamic

Table 2. Summary of the patterns supported by the languages surveyed in this paper

latest version (2.0) of UML activity diagrams [29]. More
specifically, in [24] the KEPLER system is extended to sup-
port pipelined execution over nested data collections. To do
so, a new type of actor (or task) is introduced. In order to
process a collection of stream elements, the CollectionAc-
tor interacts with the workflow engine using a special push
mechanism based on callbacks. In UML 2.0, the input and
output parameters of activities can be flagged as streaming.
This way, during the same execution of the activity multiple
input and output tokens can be exchanged with the rest of
the workflow over these streaming parameters.

As it can be seen from these examples, streaming
pipelines break with the black box approach of workflow
languages since the properties of the workflow are deter-
mined by the tasks themselves. Such deep integration of
task semantics into the workflow language also affects the
design of the underlying workflow engine, since data must
be exchanged with tasks as they are running [7].

4 Related Work

In the context of business process modeling languages
there exists a large body of literature on workflow patterns.
In [37] the authors focus on control flow aspects, and iden-
tify several patterns (e.g., parallel split and multiple in-
stances) which – as we showed in Section 2 – are highly
relevant for scientific and Grid workflows. More recently,

data [34] and messaging [4] patterns have also been stud-
ied extensively. Furthermore, several contributions discuss
how specific workflow languages support the various pat-
terns that have been identified (e.g., see [38] as a starting
point).

Relatively less work can be found regarding patterns for
scientific and Grid workflows, although the need for such
systematic classification has already been recognized for
some time [8, 9].

In [42] a large number of Grid workflow systems are
surveyed, evaluated and classified according to several di-
mensions, including the support for basic workflow patterns
(i.e., the presence of sequential and parallel control struc-
tures, DAGs vs. loops, etc.). However, the more advanced
patterns presented in this paper concerning data parallelism
and pipelined execution are not covered.

A preliminary classification of workflow patterns re-
lated to parallel computing can be found in [25]. Inspired
by database query processing systems, the authors iden-
tify three different kinds of parallelism: inter-workflow,
intra-workflow and intra-program. Intra-program and inter-
workflow parallelism are also mentioned in [21] under
the terms of fine-grained and coarse-grained parallelism.
These can be compared to the patterns described in this pa-
per as follows.

Inter-workflow parallelism refers to the simultaneous ex-
ecution of multiple workflow instances (in general) and of



multiple instances of the same workflow (in particular).
With this definition, inter-workflow parallelism can be seen
as a feature shared by most scientific and Grid workflow
management systems which does not affect the expressive
power of the corresponding workflow modeling language.

Intra-workflow parallelism is defined as the concurrent
execution of more than one program (or task) within the
same workflow. In this paper we further distinguish tasks
without dependencies (parallel execution patterns) from
tasks depending on the previous results of one another
(pipelined execution patterns).

Intra-program parallelism implies the distributed execu-
tion of individual tasks of the workflow. Due to its fine gran-
ularity, intra-program parallelism falls below the modeling
capabilities and scope of a workflow language. Instead, it
requires special support from the workflow system to cor-
rectly stage the distributed execution of the task.

5 Conclusion

In this paper we discuss several parallel computing pat-
terns that are crucial for optimizing the performance of large
scale scientific and Grid workflows. For each pattern, we
motivate its purpose, present some modeling alternatives
(depending on the characteristics of the workflow language)
and sketch some possible extensions and variations. Cur-
rently, as shown in Table 2, no existing language and work-
flow execution engine provide support for all variations of
the patterns we have identified. Still, all languages support
simple parallelism, and thus static data parallelism. From
our survey, we also observed that dynamic data parallelism
and pipelined execution can be considered as orthogonal
language features, as there are languages which support ei-
ther one (e.g., Triana or Osiris/SE), or both (e.g., Kepler,
JOpera, and HeNCE). In order to highlight the main chal-
lenges of providing an efficient implementation, we have
also commented on the patterns’ implications on the design
of the underlying workflow engines.
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