
International Journal of Electronic Commerce / Winter 2004–5, Vol. 9, No. 2, pp. 107–141.
Copyright © 2005 M.E. Sharpe, Inc. All rights reserved.

1086-4415/2005 $9.50 + 0.00.

JOpera: A Toolkit for Efficient Visual Composition
of Web Services

Cesare Pautasso and Gustavo Alonso

ABSTRACT: Web services are attracting attention because of their ability to provide stan-
dard interfaces to heterogeneous distributed services. Standard interfaces make it pos-
sible to compose more complex services out of basic ones. This paper tackles the problem
of visual service composition and the efficient and scalable execution of the resulting
composite services. The effort revolves around the JOpera system, which combines a
visual programming environment for Web services with a flexible execution engine that
interacts with Web services through the simple object access protocol (SOAP), described
with Web services language description (WSDL) and registered with a universal descrip-
tion discovery and integration (UDDI) registry. The paper explains the syntax and imple-
mentation of the JOpera Visual Composition Language (JVCL) and its ability to provide
different quality of service (QoS) levels in the execution of composite services.

KEY WORDS AND PHRASES: JOpera, scalable process execution, visual programming
languages, Web service composition.

Web service technologies may not solve every interoperability problem, but
they show great promise for reducing the complexity of integrating heteroge-
neous software components over the Internet. They provide standard proto-
cols for invoking (SOAP), describing (WSDL), and discovering services (UDDI)
published on the Internet in a platform-, programming language–, and ven-
dor-independent manner [34, 43, 44]. A most natural evolution of these tech-
nologies concerns the ability to compose complex Web services from basic
ones [12]. Especially in e-business scenarios, researchers have proposed many
ways to standardize the integration of Web services into business processes
[15, 25, 26, 30, 39, 45, 46]. None of these is yet well established in practice,
although the Business Process Execution Language for Web services
(BPEL4WS) specification seems to be ahead at the moment [25, 41].

The standardization efforts behind Web services, and the increasing num-
ber of aspects that are being formalized, open the possibility of reducing the
development costs and complexity of large distributed information systems.
In particular, a visual approach to Web service composition may very well be
a suitable complement to existing XML-based composition standards. The use
of a visual programming language may help to bridge the different standards
and will certainly make Web services much more designer-friendly. In such a
system, the order of invocations of service, data exchanges, and failure-han-
dling behavior could all be specified with a simple visual syntax. Having a
visual programming language for Web service composition is not enough,

This work was supported in part by grants from the Hasler Foundation (DISC
Project No. 1820) and the Swiss Federal Office for Education and Science (ADAPT,
BBW Project No. 02.0254 / EU IST-2001–37126).

108 CESARE PAUTASSO AND GUSTAVO ALONSO

however. The visual programming environment also needs a set of tools for
efficient, scalable, and reliable execution of such composite applications.

This paper presents the JOpera system, a visual programming environment
and execution engine for Web service composition [35]. JOpera is a research
platform used to explore several different aspects of software composition at
the Information and Communication Systems Research Group of the Swiss
Federal Institute of Technology in Zurich.

JOpera brings visual programming to the composition of Web services by
means of the JOpera Visual Composition Language (JVCL), in which services
are composed into processes defined by a simple visual notation based on
data and control flow graphs [36]. This visual approach can be very useful
both for the manual programming of such processes and for the automatic
support of semantic-based Web service composition. Given the complexity of
real business processes [10], providing an understandable representation of
the composite Web services that are built automatically based on semantic
annotations is a key factor in the success of such environments.

The discussion in this paper shows how the JVCL language can be mapped
to the BPEL4WS specification, and vice versa. In respect to the efficient and
scalable execution of composite Web services, it describes a novel architecture
for a process-support system in which a flexible kernel for process execution
can be tailored to provide different quality-of-service guarantees. This is
achieved through a set of well-defined abstractions for storing the state of a
process, propagating events, and executing tasks. Switching between differ-
ent implementations of these abstractions facilitates the achievement of dif-
ferent quality-of-service levels in terms of both scalability and reliability.

This flexible architecture lets the replication be applied to any system com-
ponent in order to increase the throughput of the overall system. Unlike most
workflow systems, JOpera achieves high performance execution by compil-
ing process descriptions into executable code rather than interpreting them
with a generic navigation algorithm.

The JOpera approach is validated in this paper with an extensive set of
experiments that systematically compare the performance of different system
configurations.

Web Services Composition

The description of the JVCL will be preceded by the presentation of a model
for building applications by composing different Web services. The model is
used both to motivate the language’s design and to give an overview of its
major features.

Web Services

Web services technologies provide open standards for interactions among
heterogeneous applications running on different platforms across the Internet.
XML-based mechanisms have been standardized for describing service inter-

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 109

faces (WSDL), publishing and discovering services (UDDI), and invoking them
over different communication protocols (SOAP) [34, 43, 44].

Once it is possible to interact with individual services, the ability to com-
pose and describe relationships between basic services becomes important
[2]. Furthermore, a single Web service may export multiple operations that
need to be invoked following a certain interaction pattern. Several terms to
denote these ideas have been proposed: choreography (WSCI), orchestration
(BPEL), automation (XLANG), flow (WSFL), coordination (WS-Coordination),
collaboration (BPSS), and conversation (WSCL) [15, 25, 26, 30, 39, 45, 46].

In the present case, the term “composition” is preferable because the focus
is on developing applications by composing existing and reusable building
blocks. Not all of these blocks need to be Web services. The JOpera process-
execution kernel is flexible enough for the integration of components acces-
sible through a wide variety of invocation mechanisms. For example, a
component can represent the execution of a command in a UNIX shell, a re-
mote procedure call, a Java remote method invocation, a job submitted to a
cluster batch-scheduling system, or a request to access a given Grid service
[7]. As stated by the jbpm.org project [4]:

BPEL4WS, BPML, WSCI are all “workflow standards” based on Web
services. While Web services are cool and is [sic] a nice buzzword, we
think it is a big limitation to restrict a workflow engine to only Web ser-
vices. There are so many other nice protocols like HTTP, RMI, CORBA,
EJB, TCP/IP, UDP/IP, JMS. . . . As a workflow engine is mostly used for
enterprise application integration, it seems ridiculous for an engine to
support only Web services and ignore all other protocols. In our opin-
ion, a workflow engine should communicate with each system in the
technology that is most appropriate and not force the development and
maintenance of Web service wrappers.

The present authors are in full agreement with this view, and have also
designed the JOpera system to support components that can be accessed
through a variety of protocols, including, but not limited to, those compliant
with Web services. As a result, the developer of a composite application is not
restricted to the use of components accessible only through the SOAP proto-
col. Moreover, in the case of components supporting several protocols, the
system can use the one that is most appropriate in terms of convenience, per-
formance, security, and reliability.

Although this should be kept in mind, the exposition in the rest of the pa-
per, for the sake of simplicity, will focus on components modeling individual
calls to Web services and will treat the terms “program,” “component,” and
“service” as synonyms.

Composition Through Processes

The notion of process is used to model the composition of independent but
related software components. A process consists of a set of tasks that can repre-
sent either a service invocation (activities) or a call to other processes (subpro-
cesses). All the information necessary to instantiate and execute a task is derived

110 CESARE PAUTASSO AND GUSTAVO ALONSO

at runtime to support a form of late binding, meaning that the actual imple-
mentation of a service is located at the latest possible moment, based on the
constraints imposed on the task.

In general, a task involves the execution of an operation that may require
some input data and may produce some output results. Processes exchange
data with other processes or with the user by means of input and output pa-
rameters. A process includes a data flow graph to describe the connections
between the input and output parameters of its tasks. From the data flow
graph of a process, one can derive a control flow graph defining the partial
order of execution of the tasks of a process. Like a data-driven data flow lan-
guage, a task cannot be started until all of its data dependencies are satisfied
[22]. Unlike traditional data flow models, an explicit description of the con-
trol flow of a process is included. This is useful for an overview of the order of
execution of the tasks and allows users to specify additional control depen-
dencies that cannot be derived from the data flow. As will be described later,
the development environment enforces the appropriate editing constraints to
keep the two graphs synchronized.

The services and processes to be composed as the tasks of a process are
chosen from a library of existing, reusable components. JOpera provides a set
of tools with which to manage the component library. For example, external
services can be looked up in UDDI registries, and their interfaces can be auto-
matically imported. This is done by translating the corresponding WSDL de-
scriptions into JVCL visual notation: Each service’s operation is imported as a
separate activity whose input and output parameters match the correspond-
ing parts of the request and response messages.

JOpera Visual Composition Language

Because a process and the relationships between its tasks and parameters can
be modeled using control and data flow graphs, the structure of a process can
be described directly with a visual programming language instead of using a
textual syntax. The discussion in this section informally defines the visual
syntax of the JVCL language used to compose a set of Web services into a
coherent application. This graphical notation is used during the development
phase to design the processes and, augmented with color-coded information,
during the monitoring phase to track the state of execution of the processes at
runtime.

A process is programmed by drawing a set of directed graphs. The nodes
of a graph represent tasks and their data parameters. The edges of the graph
represent control flow or data flow dependencies. As shown in Figure 1, a
task is drawn as a box with its name inside. An activity box has a single bor-
der; boxes for subprocesses have a double border to indicate nesting.

Data Flow

Each task has a set of input and output data parameters. An input parameter
is used to pass information to the task when it is started. An output parameter

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 111

is filled with the information returned from the task once it is finished. This
property is reflected in the graph with incoming edges connecting input pa-
rameters to their tasks and outgoing edges connecting tasks to their output
parameters (see Figure 1). These edges are not removable, because a parameter
box cannot exist without its task.

Data parameters may contain values of any data type encoded as a string.
Optionally, the user may associate a type identifier to a parameter and turn on
the static type-checking facilities of the development environment. This al-
lows the user to reject connections between parameters of mismatching data
types.

The two gray shapes in Figure 1 represent the input and output interfaces
of a process to which the corresponding parameters are attached. The input
parameters can be initialized when the user starts the process or can receive
their data from the calling process. The output parameters can be read as soon
as the process has finished its execution. The input and output parameters of
a process are displayed linked to two separate boxes in order to improve the
readability of the diagram.

In the case of activities representing a call to a Web service, each input
parameter corresponds to a part of the SOAP request message, while each
output parameter is extracted from the SOAP response. Thus, the information

Process input parameter

Process Input

Process output parameter

Process Output

Activity input parameter

Activity output parameter

Activity input parameter

Activity

SubProcess input parameter

SubProcess output parameter

SubProcess

Constant Value

Proces s - Dat aFlow

Figure 1. Sample Data Flow Syntax

P r o c e s s D a t a F l o w

112 CESARE PAUTASSO AND GUSTAVO ALONSO

exchanged with the Web service can be modeled in detail, as opposed to deal-
ing only with entire SOAP messages.

Data Flow Bindings

The data flow relationships between parameters define how data is trans-
ferred between tasks—a data flow binding is represented as an edge going
from an output parameter box of a task to an input parameter box of another
task. As shown in Figure 1, constant values can be bound to the input param-
eters of tasks.

Multiple data bindings to and from the same parameter are allowed. One
output parameter box can be linked to multiple input boxes. On the other
hand, edges from multiple output boxes of different tasks that converge on
the same input box are only useful in the case of a loop or when the corre-
sponding control flow merges from two or more alternative execution paths.
The JOpera runtime environment uses a last writer wins semantic—the value
of the input box will be copied from the output box attached to the task finish-
ing last.

The development environment enforces a set of editing rules that prevent
the user from drawing invalid bindings and explain with an error message
why an edge is not allowed. For example, data always flow from the output
parameters of tasks to the input parameters. The input parameters of pro-
cesses can only be connected to the input parameters of tasks, and the output
parameters of processes can receive data only from the output parameters of
tasks. The same constant can be connected to multiple input parameters, but
an input parameter bound to a constant value cannot have any other incom-
ing data flow edge. Thus, the consistency of the data flow graph is maintained
at all times.

System Parameters

In addition to the user-defined data flow parameters, each task has a set of
system parameters and properties that can be used for a variety of purposes.
More precisely, the system output parameters contain metadata about the
execution of the process and can be used to access them from within the pro-
cess. The system input parameters can be used to control the execution of the
individual tasks. The same visual syntax applies to the system parameters
and the user’s data flow parameters. However, the former are colored gray
and their names always begin with the SYS prefix. Connections between user
and system parameters are supported.

Figure 2 shows some examples. In the case of activities representing Web
service calls, the two system parameters called xmlin and xmlout give direct
access to the XML content of the SOAP request and response messages. The
host and priority system parameters can be used to specify additional sched-
uling constraints. The host parameter may be used, for example, when com-
posing a stateful conversation out of a set of operations belonging to the same

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 113

Web service. In this case, the first operation may be scheduled to contact any
of the available service providers, but the rest of the operations should be
forced to interact with the same service provider as the first one. This schedul-
ing constraint can be visually modeled by connecting the host system param-
eter of the first task to the same parameter of the others. The priority system
parameter may be used to manually raise (or lower) the scheduling priority
of tasks located on the critical path of the process. System parameters can also
be used to support late binding of tasks to services. The choice of which ser-
vice (or process) to invoke when executing a certain activity (or subprocess) is
dynamically based on the value of the prog (or proc) system parameter. The
system output parameter called status can be used to detect why the invoca-
tion of a task has failed. In the case of Web services, a failure can occur, for
instance, because the service provider cannot be contacted or a fault message
has been returned. Different exception-handling tasks can be executed de-
pending on the actual cause of the failure.

Control Flow

Control flow defines the partial execution order between the tasks inside a
process. Each process has one control flow graph, with tasks as nodes and
control flow dependencies as directed edges.

A control flow edge from node A to node B is used to show that task B
cannot start until task A has reached a specified execution state. Valid states
are either finished (by default), failed (when an error occurs), or aborted (after
a user kills the task). Figures 3 and 6 show examples of control flow graphs.

By definition, a data flow connection between two tasks implies a control
flow dependency. This is because it is not possible to transfer data from task A
to task B unless task A has successfully finished execution and B has not yet
been started. It follows that a subset of control flow dependencies can be de-
rived from the data flow specification. Extra control flow dependencies can
be introduced directly in the control flow graph to model constraints that are
not explicit in the data flow.

SYS.xmlout

SYS.xmlin

SOAP Activity

SYS.proc

SubProcess

SYS.prog

ActivitySYS.host

Task

SYS.host

Task2

high

SYS.priority

Activity SYS.status

Service

Figure 2. Example of System Parameters

114 CESARE PAUTASSO AND GUSTAVO ALONSO

If there is more than one incoming control flow edge to a node C, the de-
fault execution semantic is to and all dependencies. For example, if there is a
dependency coming from service A and another from B, task C cannot be
started until tasks A and B have both finished. One exception to this rule is
when the incoming connector is part of a loop in the graph, in which case the
semantic is to or the loop dependency with the others.

Alternative execution paths are modeled by associating a start condition to
each node. This is a Boolean expression referencing the value of certain data
parameters. A task can only be started when this condition evaluates to true.
Currently, start conditions may be specified only textually as one of the task
properties.

Failure-handling behavior is specified in the control flow graph by using
connectors that are triggered by the failure of a task. An exception-handling
task may be added to a process by drawing such connectors from one or more
tasks to it. With start conditions applied to the appropriate system parameter,
it is possible to discriminate between different types of failures and activate
the appropriate exception handler. By setting a link from the exception han-
dler back to the failed task, it is possible to retry its execution after the excep-
tion handler has finished.

I teration

Supporting iteration in a language based on the data flow paradigm requires
the introduction of auxiliary constructs [31]. The authors’ approach relies on
two constructs with different degrees of generality. A special data flow con-
nector is used to perform sequential parallel operations on lists. Explicit arbi-
trary loops are being used experimentally in the control flow graph.

List-based loops can repeat the same operation on a given set of values.
When no data dependencies hold, the operation can be performed in parallel.
Otherwise, the task must be applied sequentially on each value. To achieve
this, a pair of special data flow connectors, called split and merge, is intro-
duced. As in other graph rewriting schemes [8], the overall effect at runtime is
to replicate a set of nodes for each value of the input parameter list (see Figure

Activity1

SubProcess1

Activity2

Activity3

Activity4

SubProcess2

Process1

Figure 3. Sample Control Flow Syntax

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 115

8). In the case of a sequential split connector, the appropriate control flow
dependencies between the tasks of the sequence are automatically inserted
when the loop is unrolled. If the multiple instances of the task produce out-
put, the merge connector can be used to conveniently concatenate it into a
single parameter when the execution of the replicas has completed. In cases of
multiple incoming split operators on the same task, the execution of the task
will fail if the lists produced by the split operators have different numbers of
elements.

Arbitrary cycles in the control and data flow graphs may be used to explic-
itly model loops in the execution of a process. To avoid endless iteration, the
user should assign the correct conditions to enter and exit the loop.

Recursion is another way of modeling repeated behavior. In the simplest
case, this can be achieved with a subprocess calling the container process.
This enables the tasks composing the process to repeat as long as the condi-
tion associated with the subprocess holds true.

BPEL Mapping

The discussion in this section shows the extent to which it is possible to map
the authors’ visual composition language to the Business Process Execution
Language for Web services (BPEL), an emerging XML-based specification for
Web service composition, and vice versa [25]. The main goal of such mapping
is to be able to use the JOpera platform for visually composing Web services
into processes that can later be translated into BPEL or any other equivalent
specification for external execution. Conversely, a BPEL document can be im-
ported into JOpera to take advantage of its scalable execution facilities and
visual monitoring environment.

Mapping to BPEL

The components of a JVCL process can be accessed using various mechanisms,
some of which are not compatible with SOAP/WSDL. To keep the mapping
feasible, it will be assumed either that all the tasks of a process represent Web
service invocations or that Web service wrappers for the other classes of com-
ponents can be readily provided. The wrapping could be done automatically
as part of this mapping procedure or manually in a separate step.

Partners

For each of the JVCL activities invoking a Web service, a BPEL partner is cre-
ated that contains a service link corresponding to the activity’s program, and
a BPEL invoke activity is also prepared. For each of the JVCL subprocesses, a
link is created to the JOpera systems where the process is accessible, or, alter-
natively, a new scope is added to the BPEL process to make the final BPEL docu-
ment self-contained.

116 CESARE PAUTASSO AND GUSTAVO ALONSO

Control Flow

Given the arbitrary topology of the JVCL control flow connections, it is not
always possible to reduce JVCL to the block-structured control flow descrip-
tion of BPEL. However, the control flow graph of a JVCL process can always
be mapped to a single BPEL flow activity composed of all the tasks of the
process, with a direct translation of the dependencies between the service in-
vocations. In cases where control flow dependencies are used to model excep-
tion-handling, specific BPEL constructs can be employed. In a case where loops
in the JVCL control the flow graph, they can be detected and mapped to a
BPEL while block.

Data Flow

In BPEL, unlike JVCL, the flow of information between the services is not
explicitly modeled with a data flow graph. Instead, global variables (or con-
tainers, depending on the version of the specification) are used as temporary
storage for the messages exchanged by the services, and XPath expressions
are used to refer to individual data elements of the messages. To map the data
flow graph of a JVCL process, a BPEL variable is created to store the request/
response messages of each service, and a BPEL assign activity is inserted be-
fore and after the service invocation represented by the BPEL invoke activity
for each data flow connection in the graph. This assignment activity contains
the XPath expressions used to access the individual JVCL parameters (or mes-
sage parts). As an alternative, a BPEL variable can be added for each JVCL
data flow parameter. An example of a basic data flow mapping is shown in
Figure 4.

A few of the JCVL constructs have no equivalent construct in BPEL. In ad-
dition to explicit control flow loops, JVCL offers iteration through list-based
split/merge data flow operators. It is unclear how this could be mapped to an
existing standard BPEL construct. Furthermore, the system parameters of
JVCL—which, for example, give access to metadata about the process and its
tasks, and can be used to specify the late binding of a service interface to its
implementation—cannot be mapped to standard BPEL expressions.

Mapping from BPEL

BPEL mixes elements of two different types in the same process-modeling
language. On the one hand, there are structural constructs for modeling the
control flow and data flow of a process. On the other hand, there are several
different basic activities used to model the synchronous and asynchronous
invocation of Web services, as well as to handle of events and alarms. Ele-
ments of the first type can be mapped to constructs of the JVCL language,
whereas those of the second type cannot be mapped directly but are imple-
mented using a library of BPEL components.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 117

Control Flow

As the BPEL control flow is expressed using both block and graph structures,
it is always possible to map it to a purely graph-based model (see Figure 5).
Thus, BPEL constructs like sequence, flow, pick, while, and switch can be replaced
by a corresponding combination of control flow dependencies and conditions.

BPEL-structured exception-handling (based on throw, catch, and catch all ac-
tivities) can be mapped to JVCL by introducing rule-based exception handlers

Figure 4. A Process with a Single Web Service Invocation Represented
Both in JVCL and in BPEL
The corresponding parts of the process are shown side by side.

118 CESARE PAUTASSO AND GUSTAVO ALONSO

and an ad hoc task in the BPEL library that always fails and is used to represent
the throw activity.

Data Flow

The mapping of the data flow of a process is not so straightforward, given the
use of global variables (or containers) and arbitrary assign activities in BPEL.
There are two possibilities: Either an assign activity can be mapped to a direct
data flow connection between a pair of JVCL parameters or an explicit task
can be added that runs the XPath expression contained in the assign activity
and accordingly transforms the input into the output parameter.

Messaging

BPEL invoke activities can be directly mapped to JVCL activities with a refer-
ence to a program representing the corresponding service invocation. Map-
ping BPEL activities like send, receive, and wait can all be done by using JVCL
tasks of the BPEL library, for which the corresponding functionality is imple-
mented in the BPEL subsystem of the JOpera kernel.

Events

A similar approach is used with the onAlarm/onMessage constructs. In this case,
a process (or part of a process) could be set up as follows: There is a task that
corresponds to the onAlarm/onMessage. This task terminates its execution on
receipt of a message or on the occurrence of an alarm. The block of actions to
be carried out when such an event occurs is translated as before, with the
additional dependency from the task corresponding to the original onAlarm/
onMessage.

InvokeService

InvokeService 2 InvokeService 3

InvokeService 4

Figure 5. A Process Invoking Multiple Web Services Shown Both in
JVCL and in BPEL
There is a clear correspondence between the block-based structure of the BPEL representation
and the control flow graph of the JVCL.

<sequence>
<invoke name=“InvokeService”.../>
<flow>

<sequence>
<invoke name=“InvokeService2”.../>

</sequence>
<sequence>

<invoke name=“InvokeService3”.../>
<invoke name=“InvokeService4”.../>

<sequence>
</flow>

</sequence>

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 119

Visual Development Environment

The JOpera visual process development environment provides an integrated
tool kit for managing the whole life cycle of a process. This begins with the
program library, where Web services can be imported as reusable components.
The user can search the library, select a set of services, and drag and drop
them into a process. Then the data flow graph needs to be specified. This
operation is partially automatic, because the editor can automatically bind
parameters with matching names and make recommendations based on the
parameter types. Manual intervention is only required to resolve ambiguities
and connect parameters that could not be automatically matched, but the user
can view and edit the control flow graph in order to get an overview of the
order of execution of the tasks and add additional constraints. The develop-
ment environment is responsible for keeping the two graphs synchronized:
Whenever a new data flow binding is established, the necessary control flow
dependency is added. Conversely, when a control flow dependency is de-
leted, all of the corresponding data flow bindings are removed. Optional warn-
ing messages may notify the user of the consequences of these actions, which
otherwise are carried out in a transparent manner.

Once all the services have been connected, the process is compiled and up-
loaded to a JOpera runtime environment for execution. A user interactively
monitoring a running process can watch its progress as indicated by the colors
of the task boxes and can click on the parameters to inspect their contents. The
user can interact with a running process or its tasks, and can abort, pause, con-
tinue, and restart them at will. Once a process has completed its execution, the
user can access the content of all the parameters and measurements of the ex-
ecution time of each task, until the process is explicitly deleted from the system.

Example

A process used to compare the prices of books sold at various Internet stores
will serve as an example. The process receives an ISBN number as input and
returns a URL as output for a report containing the price comparisons for the
book. As stores in different countries return prices in their own currencies, the
user may specify the currency to be used in the report as an optional input
parameter. The process contains the steps needed to perform the currency
conversion. The report also contains the book’s author and title, retrieved from
a library database, and a listing of the top five results returned by a Web search
engine looking for the author and the title of the book. This simple example
can be used to present the most important features of the JVCL without hav-
ing to describe too many application-dependent details.

Process BookPrices

Figure 6 shows the control flow graph for the price-comparison process. The
process is composed of three activities (Library, GoogleSearch, MergeReport)
and one subprocess (QueryBookPrice). As its name suggests, QueryBookPrice

120 CESARE PAUTASSO AND GUSTAVO ALONSO

involves contacting a bookstore to inquire about the price of a certain book
identified by its ISBN. While this is happening, the Library activity retrieves
the author and title of the book. The Web search is started when the library
query finishes, and the report is generated when all of the previous tasks are
finished.

The data flow graph of this process has been partitioned into two different
views to enhance its readability. Figure 7 shows one view with data param-
eters and bindings of the Library, GoogleSearch, and MergeReport activities.
The second view, in Figure 8, shows the data flowing through the
QueryBookPrice subprocess. The first view shows one of the input parameters
of the process (isbn) passed both to the Library and MergeReport activities (see
Figure 7). Given the isbn as input parameter, the Library activity returns the
corresponding author and title. These two parameters are passed on to the
GoogleSearch activity, which runs a Web search using them as keywords and
returns the top five results. The MergeReport activity receives the title, the
Web search results, and the author and ISBN of the book. It uses this to gener-
ate a report and returns a url where it can be found. When the process is fin-
ished, this value is returned as the reporturl output parameter of the process.

The rest of the data flow can be seen in Figure 8, which shows an example
of the parallel split and merge iteration constructs. This allows the process to
call in parallel different services having the same interface. Both isbn and des-
tination currency process input parameters are passed to the processQuery
subprocess, which also receives the identifier of the bookshop service to be
called and the source currency of the price returned by the service. At runtime,
a parallel copy of the processQuery subprocess will be executed for each ele-
ment found in these two input parameters. In the example, the service and
source parameters are bound to constants with a list of four strings that con-
tain service identifiers (BooksCH, AmazonCOM, AmazonDE, BNCOM) and
the corresponding currency identifiers (CHF, USD, EUR, USD). Note that a
parallel instance of the processQuery subprocess will be started for each pair
of parameter values. The prices returned by the parallel instances of the
processQuery subprocess are merged into the prices input parameter of the
MergeReport activity. Both views show the same data flow connection bind-
ing the output of the last activity with the output of the process.

Library

GoogleSearch MergeReport

QueryBookPrice

BookPrices - ControlFlow

Figure 6. Control Flow Graph of the BookPrices Process

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 121

Process QueryBookPrice

The QueryBookPrice process is called from within the BookPrices process. It
contacts two Web services in order to ask the book’s price and convert it to the

isbn

BookPrices Input

reporturl

BookPrices Output

isbn

author

title

Library

isbn

author

title

url

resul ts

MergeReport

author

title

resul tsGoogleSearch

BookPrices - DataFlow/Search

Figure 7. First Data Flow View of the BookPrices Process

isbncurrency

BookPrices Input

reporturl BookPrices Output

prices

ur l

servicesMergeReport

pric e

isbndest

service

source

QueryBookPrice

BooksCH AmazonCOM AmazonDE BNCOM

CHF USD EUR USD

BookPrices - DataFlow/Query

Figure 8. Second Data Flow View of the BookPrices Process with
Parallel Split Merge Operators

122 CESARE PAUTASSO AND GUSTAVO ALONSO

desired currency. Figure 9 shows its data flow graph. This process contains
two activities: QueryBookPrice and CurrencyConvert. The input and output pa-
rameters of the process match the ones of the processQuery subprocess. The
isbn of the book is passed to the QueryBookPrice activity. To choose the services
to call, the actual service name is assigned to the SYS.prog parameter of the
activity, resulting in the invocation of the corresponding service. After the
query has completed, the resulting price and the source and destination cur-
rencies are passed to the CurrencyConvert service, which will return the corre-
sponding amount. When the process finishes, the converted price is returned
to the caller. Note that the CurrencyConvert service is not invoked when the
currencies are the same—in this case, the price is returned directly from the
result of the query.

JOpera Process Execution Kernel

It is now time to present the architecture of the JOpera process execution ker-
nel. The main purpose of the kernel is to provide an execution platform for
the JVCL that can be tailored to different levels of performance.

The relationship between the JOpera visual development environment and
the process execution kernel is as follows: Processes defined in the JVCL lan-

isbndest source service

ProcessQuery Input

price

ProcessQuery Output

isbn

price

SYS.prog QueryBookPrice

amountsourcedest

amount

CurrencyConvert

ProcessQuery - DataFlow

Figure 9. Main Data Flow View of the Query Process

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 123

guage are created and edited using the development environment. As will be
explained in the following section, once the processes are complete and ready
to be executed, they are compiled into Java, and the resulting process tem-
plate plugins are then dynamically loaded into the kernel for execution. Once
a new process instance has been started, its execution is managed by the ker-
nel, which may be run independently of the development environment. How-
ever, users may connect the development environment to an existing kernel
to monitor the activity and progress of their processes.

Before preceding to a description of the architecture of the JOpera kernel, it
will be useful to present some background on how the so-called navigation
algorithm can be used to execute the description of a process written in JVCL.

Process Navigation

Navigation is the procedure whereby the system determines the set of tasks to
be executed next, given the current state of the process and its control flow
graph, specifying the partial order of execution of the tasks. The navigation
procedure interprets the information in a directed graph, where the nodes
represent the tasks and are labeled with their current state, and the edges
represent control flow dependencies between the tasks. When a task under-
goes a state change, the algorithm proceeds in two steps. First, in order to
determine the set of tasks affected by the state change, it follows all outgoing
control flow dependencies. Then it evaluates the starting conditions of these
tasks to check whether they are ready to be started. This makes it possible,
after every change in task state, to determine the set of tasks to be started next.

The foregoing approach is very similar to mapping the process description
to a set of event, condition, and action (ECA) rules. State changes of tasks
trigger events that cause evaluations of the conditions associated with the set
of dependent tasks, and when these rules fire, the actions required to start the
tasks can be carried out. More specifically, during navigation, the system mainly
performs two types of actions. The first type of action concerns the actual task
execution, that is, packing all the necessary information into a job that can be
submitted to the scheduler responsible for finding a suitable machine to run
the task or the correct provider to which a request message should be sent in
order to invoke the service. The second type of action groups operations that
access or modify the state information of a process. These include, for ex-
ample, copying the data from the parameters of one task to another as speci-
fied in the data flow of the process, as well as setting metadata values, such as
the starting time of a task, or accessing the state of a set of tasks to determine
whether they have failed.

Executing Navigation

In practice, it is not necessary to compile a process description into a generic
ECA-like representation to be interpreted by the process engine. Instead, the
process-navigation algorithm is implemented by building on the idea of mapping

124 CESARE PAUTASSO AND GUSTAVO ALONSO

the process description to a program that embodies the specific rules corre-
sponding to the process description, generated using an ordinary programming
language. Thus, the language’s compiler can be used to produce executable
code that can then be dynamically loaded and linked into the kernel’s runtime
environment to be executed. This approach has the potential to provide better
performance. First of all, the executable code is generated in a standard pro-
gramming language—in the present case, Java—which then is compiled one
more time. This way, the process model can be mapped to standard language
constructs that can be efficiently executed. Moreover, during code generation,
it is possible to analyze the structure of the process and perform optimizations.

The generated program is completely stateless, because it only contains a
mapping of the process structure. To navigate over a particular process in-
stance, the program reads its state as input. Therefore, it is possible to navigate
over many instances of the same process using the same program code, which
only needs to be loaded once. This clear separation between the state of a pro-
cess and its structure is missing in many systems, and therefore, both types of
information need to be loaded from the persistent repository before each invo-
cation of the navigation procedure, incurring unnecessary overhead.

Architecture

The core infrastructure necessary to run the processes written in JVCL is de-
picted in Figure 10. The kernel of the JOpera process support system includes
mechanisms to (1) run the navigation algorithm, (2) schedule and (3) dispatch
tasks for execution in the correct environment, (4) access and modify state
information about tasks and processes, and (5) exchange event notifications
triggering the execution of the navigation algorithm. Note that the navigation
algorithm is independent of the actual implementation of these basic facili-
ties, which are described in the rest of this section.

Navigator

The navigator is the kernel component responsible for handling incoming
process events, which are generally triggered by changes in the state of tasks
or represent user requests. When an event occurs—for example, when the
dispatcher has finished executing a task—the navigator runs the algorithm
that decides what task should be executed next. The navigator acts as a con-
tainer for the process plugins, which embody process-specific versions of the
navigation algorithm. Upon receipt of events concerning a particular process,
the navigator, if necessary, dynamically loads the appropriate plugin.

Task-Execution Scheduler

The task-execution scheduler couples the navigator, which generates task-ex-
ecution requests, with the dispatcher, which manages the actual task execu-

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 125

tion. In a distributed kernel, the scheduler receives task-execution requests
from a number of navigators and forwards them to a set of dispatchers (see
Figure 10). This is a key component in the scalability of the system, because its
throughput limits the rate at which tasks can be executed.

Dispatcher

If the navigator is in charge of deciding what tasks should be started next, the
dispatcher is the component that actually starts executing the tasks by dis-
patching them to the appropriate execution subsystem. In order to increase
the navigator’s throughput, the actual task startup operation has been
decoupled from the navigation step that triggers it. Thus, the navigator may
asynchronously issue multiple task-startup requests to the task-execution
scheduler, which queues and forwards them to one or more dispatcher com-
ponents. Once the dispatcher receives a job, it checks what the job’s character-
istics are and sends it to a matching execution subsystem. The current prototype
contains mechanisms that execute jobs containing Unix programs, SOAP re-
quests [43], Java method calls, XML transformations, and subprocess invoca-
tions. Once the job’s execution has completed, the dispatcher sends an event
encapsulating its results to the navigator.

State-Information Storage

State-information storage is the component responsible for storing state infor-
mation about the process instances. Its design has been influenced by many
requirements, such as performance, reliability, and portability across differ-
ent data repositories. The component’s interface supports only a simple, key-
value-based data model, where the key is structured as the following tuple
(Process, Task, Instance, Box, Parameter) and is used to uniquely identify a

Navigator

Navigator

Dispatcher

Dispatcher

Dispatcher

Process
Template

Plugin

Process
Template

Plugin

Process
Template

Plugin

Process
Template

Plugin

U
N

IX
U

N
IX

U
N

IX

SO
A

P
SO

A
P

SO
A

P

JAVA
JAVA

JAVA

....
....

....

State
Information

Storage

Event Queues
Task

Execution
Scheduler

Kernel

Figure 10. Architecture of a Distributed Kernel

126 CESARE PAUTASSO AND GUSTAVO ALONSO

certain data value across the system. The definition of the key reflects the
structure of the information to be stored: A process is composed of a set of
tasks, of which there can be many instances. Each process/task instance has
multiple parameters that are grouped into three boxes (or logical name spaces):
system, input, and output.

The main advantages of this approach are summarized in the following
arguments. First, because the information in the key is neutral with respect to
the physical locations of the data, the data can be moved transparently to
exploit locality and even to replicate them in different physical repositories to
improve their availability. Furthermore, the hierarchical nature of the key sug-
gests a natural data-partitioning strategy. Another advantage is that changes
and extensions to the data model of the processes’ state information do not
affect the storage component, because this low-level data representation is
mostly independent of the data and metadata that need to be stored [1]. Fi-
nally, as shown in Figure 11, the data layer can be implemented with a wide
variety of mechanisms. These range from centralized memory-based data struc-
tures (e.g., hash maps) to traditional forms of persistent storage (e.g., network
file systems, relational databases) or distributed storage systems (e.g., Linda-
like tuple spaces like TSpaces or JavaSpaces) [11, 16, 29].

Event Queues

The various kernel components communicate by exchanging event notifica-
tions managed by event queues. The sources for the events consumed by the
navigator components are the user interface, other navigators, and the dis-
patchers. Events are sent by the user interface in order to start, stop, and, in
general, interact with a process instance. The dispatcher notifies the navigator
with an event every time a task finishes its execution. Navigators also ex-
change events, for example, when a subprocess completes its execution and
navigation over the calling process, managed by a different navigator, needs
to be triggered. The priorities of these three classes of events can be adjusted.

In a distributed kernel, event communication is also quite important in re-
spect to the system’s scalability. The authors have been experimenting with
several implementations of the event queues, each having different scalability
properties.

First, as a reference, a single tuple space server was used in which all the
kernel components were connected and exchanged events by writing and tak-
ing tuples. As expected, this centralized event queue quickly became a bottle-
neck, because all the events sent by multiple dispatchers to a set of replicated
navigators had to go through it. Therefore, a second design used a multilay-
ered approach that distributed the event queue across all the navigator com-
ponents. This approach reflected the heuristic that the navigator responsible
for handling incoming events should be kept as close as possible to the events
themselves. With this approach, dispatchers can directly send “task-finished”
events to the appropriate navigator. Events not sent to a specific navigator
still go through the central queue, which in this configuration needs to handle
relatively less traffic. For example, user-generated process-startup requests

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 127

are queued centrally, and the corresponding “start-process” events can be re-
trieved by idle navigators. To further reduce the communication overhead,
events generated by a navigator that can be processed by the same navigator
are kept locally and do not need to be sent over the network.

Parallel Navigation

The navigation algorithm was parallelized based on the observation that ev-
ery process instance is a fully independent entity. Changes to the state of one
instance do not affect other process instances. Therefore, it is possible to parti-
tion the system’s workload at the granularity level of the process instance and
to perform navigation on different, independent process instances in parallel.
As a consequence, the navigation algorithm presented here does not need to
be changed, because it can be implemented in a thread-safe manner. How-
ever, the underlying infrastructure needs to support the concurrent execution
of the algorithm, triggered by events concerning independent process instances.

Once the system is capable of performing parallel navigation, it is neces-
sary to deal with such issues as load balancing and fault tolerance. The current
prototype supports two different load-balancing strategies: Either process in-
stances can be statically partitioned among different parallel navigators (load
sharing), or events and state information can be dynamically moved between
different navigators in order to keep the system balanced. Moreover, recovery
from failures occurring in the navigator is completely transparent because each
navigational step is executed atomically within a transaction, and the state
information can be stored remotely and persistently. In fact, under a dynamic
load-balancing strategy, process instances belonging to a failed navigator can
be immediately assigned to another navigator as soon as the failure is detected.

Deployment Scenarios

This section presents some of the configurations in which the flexible kernel
architecture can be deployed (see Table 1) and discusses their main perfor-
mance advantages and disadvantages. Flexibility is important not only for
performance reasons, but also because it allows the system to be adapted to
different requirements and thus to be deployed in environments and configu-
rations that match specific workload targets. For example, the architecture
can be deployed as a lightweight process-simulation engine attached to a
process-development tool. Similarly, it can be embedded into standalone Java

State Information
Storage

Local
Main

Memory

State Information
Storage

Remote
Tupl e
Space

State Information
Storage

Main Memory
Write-through

Cache

Remote
Tupl e
Space

Figure 11. State Information Storage Implementations for the
Monolithic Kernel

Remote
Tuple
Space

128 CESARE PAUTASSO AND GUSTAVO ALONSO

applications that require process-enactment capabilities to coordinate the in-
vocation of different components and services. This way, the coordination logic
specified as a process can be directly executed within the context of the appli-
cation. Alternatively, the JOpera kernel can be used as a reliable service-or-
chestration platform running inside an application server that can also scale
to handle very large workloads, using a cluster-based configuration. Flexibil-
ity is one of the basic requirements of an infrastructure capable of exhibiting
autonomic behavior. To this end, it is important that the system can be
reconfigured dynamically following the decisions of an autonomic system
controller that monitors the current workload conditions and determines the
optimal system configuration [6].

The simplest configuration (a) is a so-called monolithic kernel, where one navi-
gator and one dispatcher run on the same machine. The state-information stor-
age, event queues, and task-execution services are implemented using the
appropriate main memory data structures. As all the data are kept in the main
memory, this configuration trades recoverability from failures for very fast ac-
cess to the state information. Given its centralized nature, such an architecture
does not scale well with large workloads. In addition to the ease of deployment,
its main benefit lies in its very low overhead with small workloads.

The next configuration (b) is the monolithic persistent kernel. Again, one
navigator and one dispatcher run on the same machine, but the storage of the
state information is implemented using a remote, persistent data repository.
This makes the kernel recoverable, but at the cost of a larger overhead, as can
be seen from the results in Figure 12.

The limitations of these centralized configurations pertain to all five main
system components: the navigator, the dispatcher, the task-execution sched-
uler, the state-information storage, and the event queues. If one component is
replicated in order to improve its throughput, another component will very
soon become a bottleneck. For example, if a set of navigators send task-execu-
tion requests to the dispatchers through a centralized scheduler, the through-
put of the scheduler limits the rate at which tasks can be executed. Similarly, if
the performance of the state-information storage improves, the navigator will
be able to produce and consume events at a faster rate, putting a greater bur-
den on the event queues. Thus, one must take care to keep the system well
balanced when scaling it up and configuring it with replicated components
(see Figure 10).

State Task
Event information execution

queues storage scheduler Dispatcher Navigator

(a) Local Volatile Local Single Single
(b) Local Persistent Local Single Single
(c) Centralized Volatile Remote Multiple Single
(d) Centralized Persistent Remote Multiple Single
(e) Distributed Volatile Remote Multiple Multiple
(f) Distributed Persistent Remote Multiple Multiple

Table 1. Deployment Scenarios.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 129

The first replicated configuration presented here concerns the dispatcher
component. In this case, a single navigator, with (d) or without (c) persistent
storage, manages the processes, whose tasks are executed by an increasingly
large number of dispatchers. One might expect that the increase in task-ex-
ecution capacity would make the system capable of handling a larger workload.
As the measurements show, this is only true when the task duration is long
enough (e.g., more than 10 seconds). For tasks lasting a shorter time, the ac-
tual bottleneck lies in the navigator component.

This problem is addressed by configurations (e) and (f), where the naviga-
tor component is also replicated, keeping the number of dispatchers and the
corresponding task-execution capacity constant. As the measurements indi-
cate, the system’s scalability is now bound by the persistent storage service. In
fact, using a centralized data repository with an increasingly large number of
clients (the navigators) only scales up to a certain limit. Therefore, another
configuration (e) was tested in which storage of state information was local-
ized at the navigator. Because of the improved performance of the storage
service, the limiting factor shifted to the event-communication service, which
also had to be partitioned in order to keep the system functioning.

Measurements

The goal of the experiments was to analyze the performance of a significant
subset of the deployment and configuration options described above. First of

0

50

100

150

200

250

300

350

400

1 64 128 256 512 1024

Number of concurrent processes

A
ve

ra
g

e
W

al
lT

im
e

(s
ec

on
ds

)

Volatile

S torage Configuration:

Process Size: tasks
Control Flow:

10
Parallel

Persistent (with Cache)

Persistent

0

100

200

300

400

500

600

700

1 64 128 256 512 1024

Number of concurrent processes

A
ve

ra
g

e
W

al
lT

im
e

(s
ec

on
ds

)

Volatile

S torage Configuration:

Process Size: tasks
Control Flow:

10
Sequential

Persistent (with Cache)

Persistent

0

500

1000

1500

2000

1 64 128 256 512 1024

Number of concurrent processes

A
ve

r
ag

e
W

al
lT

im
e

(s
ec

on
ds

)

0

1000

2000

3000

4000

5000

1 64 128 256 512 1024

Number of concurrent processes

A
ve

r
ag

e
W

al
lT

im
e

(s
ec

on
ds

)

VolatileVolatile

S torage Configuration:S torage Configuration:

Process Size: tasks
Control Flow:

100
Matrix

Process Size: tasks
Control Flow:

100
Parallel

Persistent (with Cache)Persistent (with Cache)

PersistentPersistent

Figure 12. Performance Degradation of a Centralized Process Support
System Under Increasingly Large Workloads

130 CESARE PAUTASSO AND GUSTAVO ALONSO

all, they indicated the scalability limits of a centralized system that uses the
local main memory to implement all the data-storage, event, and job-schedul-
ing services. Then external persistent storage for the state information was
added to determine the cost of adding persistence to the system. The dis-
patcher and navigator components were then replicated, and the changes to
the system’s throughput were observed.

Hardware Setup

The hardware and software setups for the experiments were as follows: The
navigator and dispatcher kernel components were run on a cluster of dual
Pentium-III 1000 MHz PCs with 1024 MB of RAM using Java 1.4.1 running on
Linux v2.4.17. Each of the three tuple space servers dedicated to state-infor-
mation storage, task-execution scheduling, and event communication was run
on a separate dual Athlon 1.5 GHz with 1024 MB of RAM, Java 1.4.1 on Linux
v2.4.19 and used the IBM’s TSpaces implementation version 2.1.2 [24].

Workload Description

The behavior of the system was affected by the properties of the workload, as
defined by the control variables listed in Table 2. The number of processes
indicates the size of the batch of concurrent processes to be executed. The size
of a process is the number of tasks composing it. Three different process sizes
were used: 1, 10, and 100 tasks. Larger processes require more storage space
and generate more jobs and events. The duration of the tasks affects the
navigator’s throughput, because the longer a task runs, the longer the delay
between a job-startup request and the corresponding termination event. Dur-
ing this time, the navigator(s) can process other events or remain idle.

Finally, different topologies of the control flow of the processes generate dif-
ferent patterns of event exchanges. In the case of a process composed of a single
task, there are no degrees of freedom concerning the control flow, but as soon
as the size of the process increases, it is possible to connect the tasks in different
ways. The system was tested with a variety of control flow graphs. Two topolo-
gies were used in the case of 10 tasks, one sequential, where the tasks are ex-
ecuted sequentially, and the other parallel, where all the tasks are executed
concurrently. The same parallel topology was also used with the larger process
composed of 100 tasks. In the case of a large process, the experiment also tested
a more complex control flow graph modeling a matrix-like computation.

Measured Variables

Measuring the user-perceived effect of the different configurations was the
first subject of interest. This effect was measured by determining how long a
process took to complete. More precisely, the average wall-clock time was
calculated for all the concurrent processes of a given batch.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 131

Second, the batch-execution time was recorded for every experiment—this
was how long it took to run an entire batch of concurrent processes. In the
case of tasks running for 0 seconds, the execution time of the batch of pro-
cesses was used to compute the average throughput of the system, defined as
the number of processed tasks per second. This value indicated the overall
speed of the system in performing the operations (navigation, scheduling,
running, and result gathering) required to execute the tasks.

Third, in order to observe the system’s internal behavior, the state-informa-
tion storage services were instrumented to measure the time necessary to cre-
ate the image of a new process instance. This critical step was a potential
performance bottleneck, because it is not possible to perform navigation until
an instance has been created. Process instantiation was expected to be expen-
sive, because, depending on the size of the process, (a lot of) information about
the process, its tasks, and their parameters needs to be written out to the state
information storage service.

Results

Reliability Overhead

Analyzing the performance of a centralized process-support system illustrates
the limitations of centralized architectures. Such a system is built with a single
component dedicated to process navigation, which uses a centralized reposi-
tory to keep track of the state of the execution of the processes. As has often
been observed, centralization and persistence both generate significant over-
head in process-support systems under a heavy workload [28, 38]. Figure 12
quantifies the user-perceived behavior of a centralized system while running
four different types of processes.

As the results show, the system’s response time—that is, the average wall-
clock duration of a process—grows as a function of the system’s workload,
defined as the number of processes running concurrently within the system.
Relative to an unloaded system, where only one process at a time is executed,
the response time in the worst case grows about 200 times when the workload
size is increased a thousandfold. The actual performance degradation depends
both on the type and size of the processes and on the specific properties of the
system’s configuration (see Figure 11). First of all, it can be observed that a rela-
tive performance improvement can be obtained by sacrificing the reliability of
the system. In fact, using the local, volatile memory of the process-navigation

Variable Values

Number of concurrent processes 1, 64, 128, 256, 512, 1024, 2048
Number of tasks 1, 10, 100
Task duration (seconds) 0, 1, 10, 30
Control flow topology Sequential, Parallel, Matrix

Table 2. Workload Control Variables.

132 CESARE PAUTASSO AND GUSTAVO ALONSO

component to store the processes’ state information can lead to response times
up to 50 percent shorter than the time required to perform navigation over a
persistent state.

In an attempt to combine the benefits of both configurations, a write-through
cache was added between the navigation component and the persistent stor-
age. As the results indicate, a cache significantly reduces the penalty of using
a remote storage service but still has limited scalability.

Monolithic Kernel

In addition to the results in Figure 12 concerning the degradation of the re-
sponse time of a centralized system under increasingly large workloads, Fig-
ure 13 presents the degradation of the corresponding throughputs. This set of
measurements was made with a monolithic kernel configured to use volatile
storage and up to 64 threads for local task execution—that is, its execution
capacity is limited to 64 concurrent tasks.

For all process types, the maximum throughput was achieved when the
smallest workload was running. As the number of concurrent processes in-
creased, the throughput decreased to a minimum. The actual degradation rate
was dependent on the process topology, as the overhead of navigation is more
important for larger and more complex processes.

0 5 10 15 20 25 30

Matrix
(100)

Parallel
(100)

Parallel
(10)

Sequential
(10)

Sequential
(1)

Pr
o

ce
ss

to
po

lo
gy

an
d

s i
ze

Throughput (t asks/sec)

64

128

256

512

1024

Number of
concurrent
processes

Figure 13. Throughput Degradation of a Centralized Process Support
System Under Increasingly Large Workloads

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 133

Process Instantiation

Figure 14 displays the average process-instantiation time as a function of the
number of navigators, the size of the process, and the configuration of the state-
information storage. As was expected, the instantiation time grew linearly with
the process size—the higher number of tasks, the more information about them
needed to be written to the data repository. The figure shows two interesting
results. Not only is the instantiation time using persistent storage more than
one order of magnitude longer than the time with volatile storage, but the
volatile storage scales well with the number of navigators, because the pro-
cess-instantiation time remains constant. On the other hand, the performance
of the centralized repository degraded as more navigators stored data in it
about their new processes. As has often been suggested, replicating the persis-
tent storage would alleviate this problem [28, 38]. In every case, the instantiation
time remained well below the 1-second boundary.

Scalable Process Navigation

Figure 15 shows the average system throughput with processes of 10 parallel
tasks run with a variable number of navigators, 25 dispatcher components,
and different workload sizes. (a) With persistent storage, the throughput for
all workload sizes peaked at 12 navigators at about 140 tasks per second. This
was a significant improvement with respect to a centralized system, espe-
cially considering that the throughput did not degrade as more and more pro-
cesses ran concurrently. In (b), the throughput actually improved as the
workload size increased, indicating that in the case of volatile storage, the

0.1

1

10

100

1000

0 5 10 15 20 25

Number of Navigators

Pr
oc

es
s

in
sta

nt
ia

tio
n

ti
m

e
(m

ill
is

ec
on

ds
)

Stat e Information Storage

Centralized, Persistent

Distributed, Vo latile

Process Size
1 task
10 tasks
100 tasks

Figure 14. Scalability of the Process Instantiation

134 CESARE PAUTASSO AND GUSTAVO ALONSO

performance of the replicated navigator did not saturate. Although the abso-
lute throughput reached about 350 tasks per second, this value was also ob-
tained with 12 navigators, because the centralized task-execution scheduler is
the limiting factor of this configuration.

Figure 16 shows the system response time with up to 2,048 concurrent pro-
cesses of 10 sequential tasks run in the same settings as Figure 15. As the num-
ber of navigators for small workloads increased, the batch-execution time
approximated the time necessary to run only one process, which was close to
10 or 100 seconds, depending on the duration of the tasks. For larger workloads,
the response time still grew linearly with the workload size, but the rate of
increase could be controlled by changing the number of navigators. Using
volatile storage, the system scaled well up to 20 navigators. Although the ab-
solute response time was twice as high, the penalty for adding persistent stor-

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25
Number of Navigators

Th
ro

ug
hp

ut
(t

as
ks

/s
ec

on
d)

Number of
concurrent
processes

64
128
256
512
1024
2048

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25
Number of Navigators

Th
ro

ug
hp

ut
(t

as
ks

/s
ec

on
d) Number of

concurrent
processes

64
128
256
512
1024
2048

Figure 15. Scalable Navigation: Average Throughput of the System
Using an Increasingly Large Number of Parallel Navigators

(a) Processes of 10 Parallel Tasks with Persistent Storage

(b) Processes of 10 Parallel Tasks with Volatile Storage

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 135

age was acceptable, for it showed good scalability up to 16 navigators access-
ing the same centralized data repository.

Related Work

The idea of developing large-scale applications by composing coarse-grained,
reusable component modules was pioneered by Wiederhold, Wegner, and Ceri
[47]. Cox and Song have developed a formal model for software based on tradi-
tional CORBA, EJB, and COM components, while Muench and Schuerr pro-
vide an overview of established component-based visual languages [14, 32].
Gelernter and Carriero present a good argument on the need for a composition
“glue” language that is different from traditional programming languages [17].

Browne, Hyder, Dongarra, Moore, and Newton propose a similar, two-step
approach in the parallel computing domain [9]. In this case, sequential proce-
dures are first written in Fortran or C and then are composed into a parallel
structure using a control-flow-based graphical notation, where the data flow
is derived implicitly by matching parameter names [8].

Many researchers have worked on the problem of extending data flow lan-
guages with iteration constructs. A survey of their contributions will be found
in the paper by Mosconi and Porta [31]. Auguston and Delgado give an ex-
ample of iteration through vector operators and conditional switches [3].

There are many different commercial products and research projects dedi-
cated to process-management systems, especially in the area of process-mod-
eling languages, with emphasis on flexibility and transactional properties [18,
37, 42].

10

100

1000

10000

0 5 10 15 20 25

641

1

1
64

64

64

128

128

128

128

256

256

256

256

512

512

512

512

1024

1024

2048

1024
2048

1024

2048

2048

Number of Navigators

B
B

a
a

t
t

c
c

h
h

E
E

x
x

e
e

c
c

u
u

t
t

i
i

o
o

n
n

T
T

i
i

m
m

e
e

(
(

s
s

e
e

c
c

o
o

n
n

d
d

s
s

)
)

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

Ba
tc

h
Ex

ec
u

tio
n

Ti
m

e
(s

ec
on

ds
)

10

100

1000

10000

0 5 10 15 20 25

Number of Navigators

10

100

1000

10000

Configuration: storage
Task duration: seconds

Persistent
10

Configuration: storage
Task duration: second

Persistent
1

Configuration: storage
Task duration: seconds

Volatile
10

Configuration: storage
Task duration: second

Volatile
1

0 5 10 15 20 25

Number of Navigators

Ba
tc

h
Ex

ec
u

tio
n

Ti
m

e
(se

co
nd

s)

1

Figure 16. Scalable Navigation: Batch Execution Time of Processes
Having 10 Sequential Tasks Depending on the Number of Navigators,
Task Duration, and Storage Configuration

136 CESARE PAUTASSO AND GUSTAVO ALONSO

Many different graphical formalisms have been used as modeling tools in
the workflow community. Examples include state charts, used in the Mentor
project, or Petri nets and such variations as Object Coordination Nets (OCoN)
[40, 48, 49]. However, there is still no well-established visual standard for pro-
cess modeling.

There has been relatively less research in the area of distributed architec-
tures for scalable process execution. More specifically, scalability has been a
common goal to be achieved through different means: replication at the data-
base layer, distribution in the process-execution engine, and decoupled com-
munication through events notification. Only rarely have all of these
approaches been followed within the same project.

The idea of building a distributed workflow-enactment system based on
event communication and event-condition-action rules has also been proposed
in the EVE project [19]. The exchange of event notifications plays an impor-
tant role in the approach proposed in this paper, whereas the ECA rules are
only an intermediate representation that bridges the gap between graph-based
models and the corresponding executable code to make them more readily
understandable to the user designing the process.

The theme of enhancing the system’s fault tolerance and scalability through
replication at the database layer was pioneered by Kamath, Alonso, Guenthoer,
and Mohan [28]. A scalable strategy for distributing process data among sepa-
rate databases was proposed in the MOBILE project as a way to replicate the
process execution layer [21, 38]. Although the experiment described in this
paper compared the performance of a centralized, persistent repository with
a distributed, volatile implementation, the subject of replicated storage was
not explored any further.

Decentralization is pursued by the MENTOR project, which analyzes pro-
cess definitions and automatically partitions them among distributed execu-
tion sites in order to avoid the bottleneck of a centralized engine [33, 49]. This
approach fits well with the requirements of workflows spanning multiple or-
ganizations. However, one execution site can become a hot spot when it is
involved in the execution of a large number of processes.

Once a distributed process architecture has been designed, load balancing,
network congestion, and QoS guarantees become interesting options. Jin, Casati,
Sayal, and Shan present a cluster-based workflow-management system focused
on quantitative comparison of two different load-balancing strategies [27]. Bauer
and Dadam use simulations, in the context of several distributed architectures,
to study how different workloads influence the load of the network and thus
the scalability of the workflow engines [5]. Gu, Nahrstedt, Chang, and Ward
use extensive simulations to validate a composition model with QoS guaran-
tees based on service-overlay networks [20].

The BPEL4WS specification is currently supported by two implementations
[25]. Both execution engines are meant to be deployed inside an application
server. The Collaxa BPEL server is the most advanced of the two implementa-
tions, because it comes with a graphical process designer and debugger [13].
The visual notation employed has a very close mapping to the underlying
BPEL document. This is advantageous, because it means that a BPEL docu-
ment does not need to be edited at the XML level. On the other hand, unlike

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 137

the JVCL language, the notation is not abstract enough to be applied to other
process-modeling paradigms. The other implementation is the Business Pro-
cess Execution Language for Web Services Java Run Time (BPWS4J) from IBM,
which also includes an editor with minimal visual support [23].

Conclusion

E-commerce applications composed of Web services are one of the most com-
plex distributed applications that can be built today. This is so because they
potentially involve interactions and exchanges of information between het-
erogeneous services distributed across the Internet. With the JOpera system,
it is possible to program such applications by simply drawing a graph.

This paper has presented the JOpera Visual Composition Language, a vi-
sual programming language for Web service composition. With a simple syn-
tax, the language offers the following features: conditional execution, failure
handling, optional type safety, implicit (list-based) and explicit iteration, nest-
ing, and recursion, as well as the visual specification of late binding and sched-
uling constraints. The JOpera development environment supports the rapid
building of processes from a library of existing component services and moni-
toring of their execution. In addition to developing an integrated set of tools
for component library management, automatic layout of graphs, static type
checking, process compilation, execution profiling, analysis, and optimiza-
tion, the authors have successfully tried the system with computer science
students developing small application integration projects.

This paper describes the visual composition language and presents a novel
architecture for a process-support system kernel that can be used to execute
processes written in it. The main innovation of this architecture consists of the
ability to transparently tailor the system’s performance to different QoS guar-
antees. By switching between different implementations of basic services, such
as data storage, event communication, and job execution, it is possible to de-
ploy the same algorithm for process navigation in a variety of configurations,
each with its own performance, scalability, and reliability properties. In par-
ticular, the cost of reliability is determined by comparing navigation performed
over volatile and persistent states. In this setting, the effect of caching is also
studied. The discussion shows that system throughput can be set to the de-
sired level by performing navigation in parallel, when the kernel is replicated
across multiple machines.

In order to leverage this extensive set of process-management tools, the
authors are in the process of completing the integration of the new kernel in
the existing BioOpera API [7]. They are also evaluating other possible imple-
mentations of the data-storage layer, such as using JDBC with a relational
database, and they are planning to develop a mapping of the event-commu-
nication system to the Java Message Service (JMS) specification. More long-
term plans include adding automatic support for dynamic system
reconfiguration in response to variations in the system’s workload and inves-
tigating the feasibility of using peer-to-peer technologies for distributed stor-
age and event propagation.

138 CESARE PAUTASSO AND GUSTAVO ALONSO

REFERENCES

1. Agrawal, R.; Somani, A.; and Xu, Y. Storage and querying of e-commerce
data. In P.M.G. Apers et al. (eds.), Proceedings of the 27th International Confer-
ence on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2001, pp.
149–158.

2. Alonso, G.; Casati, F.; Kuno, H.; and Machiraju, V. Web Services: Concepts,
Architectures and Applications. Heidelberg: Springer, 2003.

3. Auguston, M., and Delgado, A. Iterative constructs in the visual data
flow language. In Proceedings of the 1997 IEEE Symposium on Visual Lan-
guages. Los Alamitos, CA: IEEE Computer Society, 1997, pp. 152–159.

4. Baeyens, T. Java business process management. www.jbpm.org.
5. Bauer, T., and Dadam, P. A distributed execution environment for large-

scale workflow management systems with subnets and server migration. In
A.L.P. Chen, W. Klas, and M.P. Singh (eds.), Proceedings of the 2nd IFCIS
International Conference on Cooperative Information Systems). Los Alamitos,
CA: IEEE Computer Society, 1997, pp. 99–108.

6. Bausch, W. OPERA-G: A microkernel for computational grids. PhD
dissertation (ETH Zurich ETH Nr. 15395), Swiss Federal Institute of Tech-
nology, 2003.

7. Bausch, W.; Pautasso, C.; and Alonso, G. Programming for dependability
in a service based grid. In S. Lee, S. Sekiguschi, S. Matsuoka, and M. Sato
(eds.), Proceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid. Los Alamitos, CA: IEEE Computer Society, 2003, pp.
164–171.

8. Beguelin, A.; Dongarra, J.J.; Geist, A.; Manchek, R.; Moore, K.; Wade, R.;
and Sunderam, V.S. HeNCE: Graphical development tools for network-
based concurrent computing. In J. Saltz (ed.), Proceedings of the 1992 Scalable
High Performance Computing Conference. Los Alamitos, CA: IEEE Computer
Society Press, 1992, pp. 129–136.

9. Browne, J.C.; Hyder, S.I.; Dongarra, J.; Moore, K.; and Newton, P. Visual
programming and debugging for parallel computing. IEEE Parallel and
Distributed Technology: Systems and Applications, 3, 1 (spring 1995), 75–83.
10. Bussler, C. B2B Integration: Concepts and Architecture. Heidelberg:
Springer, 2002.
11. Carriero, N., and Gelernter, D. How to Write Parallel Programs. Cam-
bridge, MA: MIT Press, 1990.
12. Casati, F., and Shan, M.-C. Dynamic and adaptive composition of
e-services. Information Systems, 26 (2001), 143–163.
13. Collaxa. BPEL server and designer. www.collaxa.com.
14. Cox, P.T., and Song, B. A formal model for component-based software. In
S. Levialdi (ed.), Proceedings of the 2001 IEEE International Symposium on
Human-Centric Computing Languages and Environments. Los Alamitos, CA:
IEEE Computer Society, 2001, pp. 304–311.
15. ebXML. ebXML business process specification schema (BPSS) 1.01,
(2001). www.ebxml.org/specs/ebBPSS.pdf.
16. Freeman, E.; Hupfer, S.; and Arnold, K. JavaSpaces: Principles, Patterns
and Practice. Reading, MA: Addison-Wesley, 1999.

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 139

17. Gelernter, D., and Carriero, N. Coordination languages and their signifi-
cance. Communications of the ACM, 35, 2, (February 1992), 97–107.
18. Georgakopoulos, D.; Hornick, M.F.; and Sheth, A.P. An overview of
workflow management: From process modelling to workflow automation
infrastructure. Distributed and Parallel Databases, 3, 2 (April 1995), 119–153.
19. Geppert, A., and Tombros, D. Event-based distributed workflow execu-
tion with EVE. Technical Report 96.05. University of Zurich, Department of
Computer Science, 1998.
20. Gu, X.; Nahrstedt, K.; Chang, R.N.; and Ward, C. QoS-assured service
composition in managed service overlay networks. In F.M. Titsworth (ed.),
Proceedings of the 23rd International Conference on Distributed Computing
Systems. Los Alamitos, CA: IEEE Computer Society, 2003, pp. 194–201.
21. Heinl, P., and Schuster, H. Towards a highly scaleable architecture for
workflow management systems. In R.R. Wagner and H. Thoma (eds.),
Proceedings of the 7th International Workshop on Database and Expert Systems
Applications. Los Alamitos, CA: IEEE Computer Society, 1996, pp. 439–444.
22. Hils, D.D. Visual languages and computing survey: Data flow visual
programming languages. Journal of Visual Languages and Computing, 3, 1
(1992), 69–101.
23. IBM. BPEL4WS Java runtime. www.alphaworks.ibm.com/tech/
bpws4j/.
24. IBM. TSpaces. www.almaden.ibm.com/cs/Tspaces/.
25. IBM, Microsoft, and BEA Systems. Business Process Execution Language
for Web services (BPEL4WS) 1.0 (2002). www.ibm.com/developerworks/
library/ws-bpel.
26. IBM, Microsoft, and BEA Systems. Web services coordination (WS-
Coordination) (2002). www.ibm.com/developerworks/library/ws-coor/.
27. Jin, L.; Casati, F.; Sayal, M.; and Shan, M.-C. Load balancing in distrib-
uted workflow management system. In G.B. Lamont (ed.), Proceedings of the
ACM Symposium on Applied Computing. Las Vegas: ACM Press, 2001, pp.
522–530.
28. Kamath, M.; Alonso, G.; Guenthoer, R.; and Mohan, C. Providing high
availability in very large workflow management systems. In P.M.G. Apers,
M. Bouzeghoub, and G. Gardarin (eds.), Proceedings of the 5th International
Conference on Advances in Database Technology. Avignon, France: Springer,
1996, pp. 427–442.
29. Lehman, T.J.; Cozzi, A.; Xiong, Y.; Gottschalk, J.; Vasudevan, V.; Landis,
S.; Davis, P.; Khavar, B.; and Bowman, P. Hitting the distributed computing
sweet spot with TSpaces. Computer Networks, 35, 4, (March 2001), 457–472.
30. Leymann, F. Web services flow language (WSFL 1.0). IBM (2001).
www-3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.
31. Mosconi, M., and Porta, M. Iteration constructs in data-flow visual
programming languages. Computer Languages, 26, 2–4 (July 2000), 67–104.
32. Muench, M., and Schuerr, A. Leaving the visual language ghetto. In D.C.
Martin (ed.), Proceedings of the IEEE Symposium on Visual Languages. Los
Alamitos, CA: IEEE Computer Society, 1999, pp. 148–155.
33. Muth, P.; Wodtke, D.; Weissenfels, J.; Dittrich, A.; and Weikum, G. From
centralized workflow specification to distributed workflow execution.

140 CESARE PAUTASSO AND GUSTAVO ALONSO

Journal of Intelligent Information Systems, 10, 2 (1998), 159–184.
34. Oasis. Universal Description, Discovery and Integration of Web services
(UDDI) Version 3.0, (2002). http://uddi.org/pubs/uddi v3.htm.
35. Pautasso, C. JOpera: Process support for more than Web services.
www.iks.ethz.ch/jopera/.
36. Pautasso, C., and Alonso, G. Visual composition of Web services. In P.
Cox and J. Kosking (eds.), Proceedings of the 2003 IEEE International Sympo-
sium on Human-Centric Computing Languages and Environments. Los
Alamitos, CA: IEEE Computer Society, 2003, pp. 92–99.
37. Schuldt, H.; Alonso, G.; Beeri, C.; and Schek, H.-J. Atomicity and isola-
tion for transactional processes. ACM Transactions on Database Systems, 27, 1
(2002), 63–116.
38. Schuster, H., and Heinl, P. A workflow data distribution strategy for
scalable workflow management systems. In B. Bryant, J. Carroll, J.
Hightower, and K.M. George (eds.), Proceedings of the 1997 ACM Symposium
on Applied Computing. San Jose, CA: ACM Press, 1997, pp. 174–176.
39. Thatte, S. XLANG: Web services for business process design. Microsoft
(2001). www.gotdotnet.com/team/xml_wsspecs/xlang-c/.
40. van der Aalst, W.M.P. The application of Petri nets to workflow manage-
ment. Journal of Circuits, Systems and Computers, 8, 1 (1998), 21–66.
41. van der Aalst, W.M.P. Don’t go with the flow: Web services composition
standards exposed. IEEE Intelligent Systems, 18, 1 (2003), 72–85.
42. van der Aalst, W.M.P., and Berens, P.J.S. Beyond workflow management:
product driven case handling. In C. Ellis, and I. Zigurs (eds.), Proceedings of
the 2001 International ACM SIGGROUP Conference on Supporting Group Work.
Boulder, CO: ACM Press, 2001, pp. 42–51.
43. W3C. Simple Object Access Protocol (SOAP) 1.1 (2000). www.w3.org/
TR/SOAP/.
44. W3C. Web Services Definition Language (WSDL) 1.1, (2001).
www.w3.org/TR/wsdl/.
45. W3C. Web Services Choreography Interface (WSCI) 1.0, (2002)
www.w3.org/TR/wsci/.
46. W3C. Web Services Conversation Language (WSCL) 1.0, (2002).
www.w3.org/TR/wsc110/.
47. Wiederhold, G.; Wegner, P.; and Ceri, S. Towards megaprogramming: A
paradigm for component-based programming. Communications of the ACM,
35, 11 (1992), 89–99.
48. Wirtz, G.; Weske, M.; and Giese, H. Extending UML with workflow
modeling capabilities. In O. Etzion and P. Scheuermann (eds.), 7th Interna-
tional Conference on Cooperative Information Systems. Eilat, Israel: Springer,
2000, pp. 30–41.
49. Wodtke, D.; Weissenfels, J.; Weikum, G.; and Kotz-Dittrich, A. The
Mentor project: Steps toward enterprise-wide workflow management. In
S.Y.W. Su (ed.), Proceedings of the 12th International Conference on Data Engi-
neering. Los Alamitos, CA: IEEE Computer Society, 1996, pp. 556–565.

CESARE PAUTASSO (pautasso@inf.ethz.ch) received the computer science engineer-
ing degree from the Politecnico di Milano in 2000 and the Ph.D. degree from the Swiss

INTERNATIONAL JOURNAL OF ELECTRONIC COMMERCE 141

Federal Institute of Technology (ETH Zurich) in 2004. He is currently doing his post-
doctoral research at ETH in the areas of process-support system, autonomic comput-
ing, and visual programming languages applied to Web service composition. He is a
student member of the IEEE and the IEEE Computer Society.

GUSTAVO ALONSO (alonso@inf.ethz.ch) is a professor of computer science at the
Swiss Federal Institute of Technology (ETH Zurich). He has an engineering degree in
telecommunications from Madrid Polytechnic University (1989), and M.S. (1992) and
Ph.D. (1994) degrees in computer science from the University of California at Santa
Barbara. Before joining ETH, he worked at the IBM Almaden Research Center in San
Jose, California. His general research interests include databases, distributed applica-
tions, mobile and pervasive computing, dynamic software adaptation, and proactive
computing. He is a member of the ACM and the IEEE Computer Society.

